These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 25272963)
1. A single amino acid substitution affects the substrate specificity of the seryl-tRNA synthetase homologue. Maršavelski A; Lesjak S; Močibob M; Weygand-Đurašević I; Tomić S Mol Biosyst; 2014 Dec; 10(12):3207-16. PubMed ID: 25272963 [TBL] [Abstract][Full Text] [Related]
2. Structural flexibility of the methanogenic-type seryl-tRNA synthetase active site and its implication for specific substrate recognition. Bilokapic S; Rokov Plavec J; Ban N; Weygand-Durasevic I FEBS J; 2008 Jun; 275(11):2831-44. PubMed ID: 18422966 [TBL] [Abstract][Full Text] [Related]
3. An idiosyncratic serine ordering loop in methanogen seryl-tRNA synthetases guides substrates through seryl-tRNASer formation. Dulic M; Pozar J; Bilokapic S; Weygand-Durasevic I; Gruic-Sovulj I Biochimie; 2011 Oct; 93(10):1761-9. PubMed ID: 21704670 [TBL] [Abstract][Full Text] [Related]
4. Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis. Mocibob M; Ivic N; Bilokapic S; Maier T; Luic M; Ban N; Weygand-Durasevic I Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14585-90. PubMed ID: 20663952 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri. Dutta S; Nandi N J Phys Chem B; 2015 Aug; 119(34):10832-48. PubMed ID: 25794108 [TBL] [Abstract][Full Text] [Related]
6. Characterization of yeast seryl-tRNA synthetase active site mutants with improved discrimination against substrate analogues. Landeka I; Filipic-Rocak S; Zinic B; Weygand-Durasevic I Biochim Biophys Acta; 2000 Jul; 1480(1-2):160-70. PubMed ID: 11004561 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl tRNA synthetases. Dutta S; Kundu S; Saha A; Nandi N J Biomol Struct Dyn; 2018 Mar; 36(4):878-892. PubMed ID: 28317434 [TBL] [Abstract][Full Text] [Related]
8. The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase. Belrhali H; Yaremchuk A; Tukalo M; Berthet-Colominas C; Rasmussen B; Bösecke P; Diat O; Cusack S Structure; 1995 Apr; 3(4):341-52. PubMed ID: 7613865 [TBL] [Abstract][Full Text] [Related]
9. Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition. Bilokapic S; Maier T; Ahel D; Gruic-Sovulj I; Söll D; Weygand-Durasevic I; Ban N EMBO J; 2006 Jun; 25(11):2498-509. PubMed ID: 16675947 [TBL] [Abstract][Full Text] [Related]
10. Hydrolysis of non-cognate aminoacyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain. Gruic-Sovulj I; Rokov-Plavec J; Weygand-Durasevic I FEBS Lett; 2007 Oct; 581(26):5110-4. PubMed ID: 17931630 [TBL] [Abstract][Full Text] [Related]
11. Defining the active site of yeast seryl-tRNA synthetase. Mutations in motif 2 loop residues affect tRNA-dependent amino acid recognition. Lenhard B; Filipić S; Landeka I; Skrtić I; Söll D; Weygand-Durasević I J Biol Chem; 1997 Jan; 272(2):1136-41. PubMed ID: 8995413 [TBL] [Abstract][Full Text] [Related]
12. Arabidopsis seryl-tRNA synthetase: the first crystal structure and novel protein interactor of plant aminoacyl-tRNA synthetase. Kekez M; Zanki V; Kekez I; Baranasic J; Hodnik V; Duchêne AM; Anderluh G; Gruic-Sovulj I; Matković-Čalogović D; Weygand-Durasevic I; Rokov-Plavec J FEBS J; 2019 Feb; 286(3):536-554. PubMed ID: 30570212 [TBL] [Abstract][Full Text] [Related]
13. Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity. Borel F; Vincent C; Leberman R; Härtlein M Nucleic Acids Res; 1994 Aug; 22(15):2963-9. PubMed ID: 8065908 [TBL] [Abstract][Full Text] [Related]
14. Fidelity of seryl-tRNA synthetase to binding of natural amino acids from HierDock first principles computations. McClendon CL; Vaidehi N; Kam VW; Zhang D; Goddard WA Protein Eng Des Sel; 2006 May; 19(5):195-203. PubMed ID: 16517553 [TBL] [Abstract][Full Text] [Related]
15. Substrate recognition and fidelity of maize seryl-tRNA synthetases. Rokov-Plavec J; Lesjak S; Gruic-Sovulj I; Mocibob M; Dulic M; Weygand-Durasevic I Arch Biochem Biophys; 2013 Jan; 529(2):122-30. PubMed ID: 23228595 [TBL] [Abstract][Full Text] [Related]
16. Crystallographic and mutational studies of seryl-tRNA synthetase from the archaeon Pyrococcus horikoshii. Itoh Y; Sekine S; Kuroishi C; Terada T; Shirouzu M; Kuramitsu S; Yokoyama S RNA Biol; 2008; 5(3):169-77. PubMed ID: 18818520 [TBL] [Abstract][Full Text] [Related]
17. Classical molecular dynamics simulation of seryl tRNA synthetase and threonyl tRNA synthetase bound with tRNA and aminoacyl adenylate. Dutta S; Nandi N J Biomol Struct Dyn; 2019 Feb; 37(2):336-358. PubMed ID: 29320932 [TBL] [Abstract][Full Text] [Related]
18. Idiosyncratic helix-turn-helix motif in Methanosarcina barkeri seryl-tRNA synthetase has a critical architectural role. Bilokapic S; Ivic N; Godinic-Mikulcic V; Piantanida I; Ban N; Weygand-Durasevic I J Biol Chem; 2009 Apr; 284(16):10706-13. PubMed ID: 19228694 [TBL] [Abstract][Full Text] [Related]