These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25272963)

  • 21. Insights into substrate promiscuity of human seryl-tRNA synthetase.
    Holman KM; Puppala AK; Lee JW; Lee H; Simonović M
    RNA; 2017 Nov; 23(11):1685-1699. PubMed ID: 28808125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maize seryl-tRNA synthetase: specificity of substrate recognition by the organellar enzyme.
    Rokov-Plavec J; Lesjak S; Landeka I; Mijakovic I; Weygand-Durasevic I
    Arch Biochem Biophys; 2002 Jan; 397(1):40-50. PubMed ID: 11747308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of amino acids in the N-terminal domain of atypical methanogenic-type Seryl-tRNA synthetase critical for tRNA recognition.
    Jaric J; Bilokapic S; Lesjak S; Crnkovic A; Ban N; Weygand-Durasevic I
    J Biol Chem; 2009 Oct; 284(44):30643-51. PubMed ID: 19734148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase.
    Sankaranarayanan R; Dock-Bregeon AC; Rees B; Bovee M; Caillet J; Romby P; Francklyn CS; Moras D
    Nat Struct Biol; 2000 Jun; 7(6):461-5. PubMed ID: 10881191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recognition between tRNASer and archaeal seryl-tRNA synthetases monitored by suppression of bacterial amber mutations.
    Lesjak S; Weygand-Durasevic I
    FEMS Microbiol Lett; 2009 May; 294(1):111-8. PubMed ID: 19309487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation of aminoacyl-tRNA synthetase catalytic core to carrier protein aminoacylation.
    Mocibob M; Ivic N; Luic M; Weygand-Durasevic I
    Structure; 2013 Apr; 21(4):614-26. PubMed ID: 23541895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The proximal region of a noncatalytic eukaryotic seryl-tRNA synthetase extension is required for protein stability in vitro and in vivo.
    Mocibob M; Weygand-Durasevic I
    Arch Biochem Biophys; 2008 Feb; 470(2):129-38. PubMed ID: 18067851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The C-terminal extension of yeast seryl-tRNA synthetase affects stability of the enzyme and its substrate affinity.
    Weygand-Durasević I; Lenhard B; Filipić S; Söll D
    J Biol Chem; 1996 Feb; 271(5):2455-61. PubMed ID: 8576207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic analysis of serine levels using seryl-tRNA synthetase coupled with spectrophotometric detection.
    Kugimiya A; Matsuzaki E
    Appl Biochem Biotechnol; 2014 Dec; 174(7):2527-36. PubMed ID: 25190303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Seryl-tRNA synthetase/tRNASer acceptor stem interface is mediated via a specific network of water molecules.
    Eichert A; Oberthuer D; Betzel C; Gessner R; Erdmann VA; Fürste JP; Förster C
    Biochem Biophys Res Commun; 2011 Sep; 412(4):532-6. PubMed ID: 21787751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Seryl-tRNA synthetase is not responsible for the evolution of CUG codon reassignment in Candida albicans.
    O'Sullivan JM; Mihr MJ; Santos MA; Tuite MF
    Yeast; 2001 Mar; 18(4):313-22. PubMed ID: 11223940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superposition of a tRNASer acceptor stem microhelix into the seryl-tRNA synthetase complex.
    Förster C; Brauer AB; Fürste JP; Betzel Ch; Weber M; Cordes F; Erdmann VA
    Biochem Biophys Res Commun; 2007 Oct; 362(2):415-8. PubMed ID: 17719008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective inhibition of divergent seryl-tRNA synthetases by serine analogues.
    Ahel D; Slade D; Mocibob M; Söll D; Weygand-Durasevic I
    FEBS Lett; 2005 Aug; 579(20):4344-8. PubMed ID: 16054140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine.
    Arnez JG; Dock-Bregeon AC; Moras D
    J Mol Biol; 1999 Mar; 286(5):1449-59. PubMed ID: 10064708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Archaeabacterial seryl-tRNA synthetases: adaptation to extreme environments and evolutionary analysis.
    Taupin CM; Leberman R
    J Mol Evol; 1999 Apr; 48(4):408-20. PubMed ID: 10079279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutation and evolution of the magnesium-binding site of a class II aminoacyl-tRNA synthetase.
    Ador L; Jaeger S; Geslain R; Martin F; Cavarelli J; Eriani G
    Biochemistry; 2004 Jun; 43(22):7028-37. PubMed ID: 15170340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of an Escherichia coli seryl-tRNA synthetase mutant with a large increase in Km for serine.
    Willison JC; Härtlein M; Leberman R
    J Bacteriol; 1995 Jun; 177(11):3347-50. PubMed ID: 7768840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clone and functional analysis of Seryl-tRNA synthetase and Tyrosyl-tRNA synthetase from silkworm, Bombyx mori.
    Hu J; Tian J; Li F; Xue B; Hu J; Cheng X; Li J; Shen W; Li B
    Sci Rep; 2017 Jan; 7():41563. PubMed ID: 28134300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural Insights into the Binding of Natural Pyrimidine-Based Inhibitors of Class II Aminoacyl-tRNA Synthetases.
    Pang L; Nautiyal M; De Graef S; Gadakh B; Zorzini V; Economou A; Strelkov SV; Van Aerschot A; Weeks SD
    ACS Chem Biol; 2020 Feb; 15(2):407-415. PubMed ID: 31869198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.