BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25273142)

  • 1. The human bitter taste receptor hTAS2R39 is the primary receptor for the bitterness of theaflavins.
    Yamazaki T; Sagisaka M; Ikeda R; Nakamura T; Matsuda N; Ishii T; Nakayama T; Watanabe T
    Biosci Biotechnol Biochem; 2014; 78(10):1753-6. PubMed ID: 25273142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the hTAS2R14 human bitter-taste receptor by (-)-epigallocatechin gallate and (-)-epicatechin gallate.
    Yamazaki T; Narukawa M; Mochizuki M; Misaka T; Watanabe T
    Biosci Biotechnol Biochem; 2013; 77(9):1981-3. PubMed ID: 24018685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bitter taste receptor activation by flavonoids and isoflavonoids: modeled structural requirements for activation of hTAS2R14 and hTAS2R39.
    Roland WS; van Buren L; Gruppen H; Driesse M; Gouka RJ; Smit G; Vincken JP
    J Agric Food Chem; 2013 Nov; 61(44):10454-66. PubMed ID: 24117141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the bitterness of green tea catechins by a cell-based assay with the human bitter taste receptor hTAS2R39.
    Narukawa M; Noga C; Ueno Y; Sato T; Misaka T; Watanabe T
    Biochem Biophys Res Commun; 2011 Feb; 405(4):620-5. PubMed ID: 21272567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities.
    Sirk TW; Friedman M; Brown EF
    J Agric Food Chem; 2011 Apr; 59(8):3780-7. PubMed ID: 21417313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse inhibition of plasminogen activator inhibitor type 1 by theaflavins of black tea.
    Jankun J; Skotnicka M; Łysiak-Szydłowska W; Al-Senaidy A; Skrzypczak-Jankun E
    Int J Mol Med; 2011 Apr; 27(4):525-9. PubMed ID: 21308350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soy isoflavones and other isoflavonoids activate the human bitter taste receptors hTAS2R14 and hTAS2R39.
    Roland WS; Vincken JP; Gouka RJ; van Buren L; Gruppen H; Smit G
    J Agric Food Chem; 2011 Nov; 59(21):11764-71. PubMed ID: 21942422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6-methoxyflavanones as bitter taste receptor blockers for hTAS2R39.
    Roland WS; Gouka RJ; Gruppen H; Driesse M; van Buren L; Smit G; Vincken JP
    PLoS One; 2014; 9(4):e94451. PubMed ID: 24722342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment.
    Yu Z; Liao Y; Zeng L; Dong F; Watanabe N; Yang Z
    Food Res Int; 2020 Mar; 129():108842. PubMed ID: 32036878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies.
    Glisan SL; Grove KA; Yennawar NH; Lambert JD
    Food Chem; 2017 Feb; 216():296-300. PubMed ID: 27596423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theaflavin-3-gallate and theaflavin-3'-gallate, polyphenols in black tea with prooxidant properties.
    Babich H; Gottesman RT; Liebling EJ; Schuck AG
    Basic Clin Pharmacol Toxicol; 2008 Jul; 103(1):66-74. PubMed ID: 18346048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theaflavins from black tea, especially theaflavin-3-gallate, reduce the incorporation of cholesterol into mixed micelles.
    Vermeer MA; Mulder TP; Molhuizen HO
    J Agric Food Chem; 2008 Dec; 56(24):12031-6. PubMed ID: 19049290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inhibitory effect and mechanism of theaflavins on fluoride transport and uptake in HIEC-6 cell model.
    Huang J; Fan Y; Lei Z; Yu Z; Ni D; Chen Y
    Food Chem Toxicol; 2023 Aug; 178():113939. PubMed ID: 37433353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the bitter-masking potential of food proteins for EGCG by a cell-based human bitter taste receptor assay and binding studies.
    Bohin MC; Roland WS; Gruppen H; Gouka RJ; van der Hijden HT; Dekker P; Smit G; Vincken JP
    J Agric Food Chem; 2013 Oct; 61(42):10010-7. PubMed ID: 24093533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic stability and inhibitory effect of O-methylated theaflavins on H2O2-induced oxidative damage in human HepG2 cells.
    Tanaka Y; Kirita M; Abe Y; Miyata S; Tagashira M; Kanda T; Maeda-Yamamoto M
    Biosci Biotechnol Biochem; 2014; 78(7):1140-6. PubMed ID: 25229848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Black tea theaflavins suppress dioxin-induced transformation of the aryl hydrocarbon receptor.
    Fukuda I; Sakane I; Yabushita Y; Sawamura S; Kanazawa K; Ashida H
    Biosci Biotechnol Biochem; 2005 May; 69(5):883-90. PubMed ID: 15914905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. O-methylated theaflavins suppress the intracellular accumulation of triglycerides from terminally differentiated human visceral adipocytes.
    Tanaka Y; Kirita M; Miyata S; Abe Y; Tagashira M; Kanda T; Maeda-Yamamoto M
    J Agric Food Chem; 2013 Dec; 61(51):12634-9. PubMed ID: 24308363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theaflavin-3, 3'-digallate induces epidermal growth factor receptor downregulation.
    Mizuno H; Cho YY; Zhu F; Ma WY; Bode AM; Yang CS; Ho CT; Dong Z
    Mol Carcinog; 2006 Mar; 45(3):204-12. PubMed ID: 16353237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theaflavin-3-gallate, a natural antagonist for Hsp90: In-silico and in-vitro approach.
    Bhadresha K; Kumar SP; Brahmbhatt J; Patel C; Pandya P; Jain N; Rawal R
    Chem Biol Interact; 2022 Feb; 353():109774. PubMed ID: 34958756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural identification of mouse fecal metabolites of theaflavin 3,3'-digallate using liquid chromatography tandem mass spectrometry.
    Chen H; Parks TA; Chen X; Gillitt ND; Jobin C; Sang S
    J Chromatogr A; 2011 Oct; 1218(41):7297-306. PubMed ID: 21906744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.