These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 25273189)

  • 21. Absolute negative conductivity and spontaneous current generation in semiconductor superlattices with hot electrons.
    Cannon EH; Kusmartsev FV; Alekseev KN; Campbell DK
    Phys Rev Lett; 2000 Aug; 85(6):1302-5. PubMed ID: 10991537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chaotic electron diffusion through stochastic webs enhances current flow in superlattices.
    Fromhold TM; Patanè A; Bujkiewicz S; Wilkinson PB; Fowler D; Sherwood D; Stapleton SP; Krokhin AA; Eaves L; Henini M; Sankeshwar NS; Sheard FW
    Nature; 2004 Apr; 428(6984):726-30. PubMed ID: 15085125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alternating current-driven graphene superlattices: Kinks, dissipative solitons, dynamic chaotization.
    Kryuchkov SV; Kukhar' EI
    Chaos; 2015 Jul; 25(7):073116. PubMed ID: 26232967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Terahertz radiation from oscillating electrons in laser-induced wake fields.
    Cao LH; Yu W; Xu H; Zheng CY; Liu ZJ; Li B; Bogaerts A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046408. PubMed ID: 15600531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear Charge Transport and Excitable Phenomena in Semiconductor Superlattices.
    Bonilla LL; Carretero M; Mompó E
    Entropy (Basel); 2024 Aug; 26(8):. PubMed ID: 39202142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subterahertz chaos generation by coupling a superlattice to a linear resonator.
    Hramov AE; Makarov VV; Koronovskii AA; Kurkin SA; Gaifullin MB; Alexeeva NV; Alekseev KN; Greenaway MT; Fromhold TM; Patanè A; Kusmartsev FV; Maksimenko VA; Moskalenko OI; Balanov AG
    Phys Rev Lett; 2014 Mar; 112(11):116603. PubMed ID: 24702398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel regimes of electron dynamics in superlattices.
    Patanè A; Fromhold M
    Philos Trans A Math Phys Eng Sci; 2006 Dec; 364(1849):3477-92. PubMed ID: 17090471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coexistence of Bloch and Parametric Mechanisms of High-Frequency Gain in Doped Superlattices.
    Čižas V; Alexeeva N; Alekseev KN; Valušis G
    Nanomaterials (Basel); 2023 Jul; 13(13):. PubMed ID: 37446509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice.
    Yin Z; Song H; Zhang Y; Ruiz-García M; Carretero M; Bonilla LL; Biermann K; Grahn HT
    Phys Rev E; 2017 Jan; 95(1-1):012218. PubMed ID: 28208354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ballistic miniband conduction in a graphene superlattice.
    Lee M; Wallbank JR; Gallagher P; Watanabe K; Taniguchi T; Fal'ko VI; Goldhaber-Gordon D
    Science; 2016 Sep; 353(6307):1526-1529. PubMed ID: 27708100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing spin injection efficiency through half-metallic miniband conduction in a spin-filter superlattice.
    Yang YH; Li L; Liu F; Gao ZW; Miao GX
    J Phys Condens Matter; 2016 Feb; 28(5):056003. PubMed ID: 26761786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regular rather than chaotic origin of the resonant transport in superlattices.
    Soskin SM; Khovanov IA; McClintock PV
    Phys Rev Lett; 2015 Apr; 114(16):166802. PubMed ID: 25955068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chaotic transport of electron wave packet in Weyl semimetal slab.
    Yar A; Ullah Khan S
    Phys Rev E; 2019 May; 99(5-1):052213. PubMed ID: 31212456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intermittency route to chaos and broadband high-frequency generation in semiconductor superlattice coupled to external resonator.
    Hramov AE; Makarov VV; Maximenko VA; Koronovskii AA; Balanov AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022911. PubMed ID: 26382480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Terahertz beat frequency generation from two-mode lasing operation of coupled microdisk laser.
    Ryu JW; Cho J; Kim CM; Shinohara S; Kim SW
    Opt Lett; 2012 Aug; 37(15):3210-2. PubMed ID: 22859135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Terahertz Bloch oscillator with a modulated bias.
    Hyart T; Alexeeva NV; Mattas J; Alekseev KN
    Phys Rev Lett; 2009 Apr; 102(14):140405. PubMed ID: 19392419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport through quantum wells and superlattices on topological insulator surfaces.
    Song JT; Li YX; Sun QF
    J Phys Condens Matter; 2014 May; 26(18):185007. PubMed ID: 24759077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast Detection of a Weak Signal by a Stochastic Resonance Induced by a Coherence Resonance in an Excitable GaAs/Al_{0.45}Ga_{0.55}As Superlattice.
    Shao Z; Yin Z; Song H; Liu W; Li X; Zhu J; Biermann K; Bonilla LL; Grahn HT; Zhang Y
    Phys Rev Lett; 2018 Aug; 121(8):086806. PubMed ID: 30192582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic-field-induced suppression of electronic conduction in a superlattice.
    Patanè A; Mori N; Fowler D; Eaves L; Henini M; Maude DK; Hamaguchi C; Airey R
    Phys Rev Lett; 2004 Oct; 93(14):146801. PubMed ID: 15524824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semiconductor superlattices: a tool for terahertz acoustics.
    Huynh A; Perrin B; Lemaître A
    Ultrasonics; 2015 Feb; 56():66-79. PubMed ID: 25163800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.