These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25273408)

  • 1. Path induced coherent energy transfer in light-harvesting complexes in purple bacteria.
    Sun K; Ye J; Zhao Y
    J Chem Phys; 2014 Sep; 141(12):124103. PubMed ID: 25273408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitonic energy transfer in light-harvesting complexes in purple bacteria.
    Ye J; Sun K; Zhao Y; Yu Y; Lee CK; Cao J
    J Chem Phys; 2012 Jun; 136(24):245104. PubMed ID: 22755605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multichromophoric Förster resonance energy transfer from b800 to b850 in the light harvesting complex 2: evidence for subtle energetic optimization by purple bacteria.
    Jang S; Newton MD; Silbey RJ
    J Phys Chem B; 2007 Jun; 111(24):6807-14. PubMed ID: 17439170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. B800-B850 coherence correlates with energy transfer rates in the LH2 complex of photosynthetic purple bacteria.
    Smyth C; Oblinsky DG; Scholes GD
    Phys Chem Chem Phys; 2015 Dec; 17(46):30805-16. PubMed ID: 25797525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emission lineshapes of the B850 band of light-harvesting 2 (LH2) complex in purple bacteria: a second order time-nonlocal quantum master equation approach.
    Kumar P; Jang S
    J Chem Phys; 2013 Apr; 138(13):135101. PubMed ID: 23574256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Level Design Principle behind Optimal Sizes of Photosynthetic LH2 Complex: Taming Disorder through Cooperation of Hydrogen Bonding and Quantum Delocalization.
    Jang S; Rivera E; Montemayor D
    J Phys Chem Lett; 2015 Mar; 6(6):928-34. PubMed ID: 26262847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized master equation with non-Markovian multichromophoric Förster resonance energy transfer for modular exciton densities.
    Jang S; Hoyer S; Fleming G; Whaley KB
    Phys Rev Lett; 2014 Oct; 113(18):188102. PubMed ID: 25396397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid radical cation formation in LH2 of purple bacteria: a quantum chemical study.
    Wormit M; Dreuw A
    J Phys Chem B; 2006 Nov; 110(47):24200-6. PubMed ID: 17125392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measures and implications of electronic coherence in photosynthetic light-harvesting.
    Smyth C; Fassioli F; Scholes GD
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3728-49. PubMed ID: 22753823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometry, Supertransfer, and Optimality in the Light Harvesting of Purple Bacteria.
    Baghbanzadeh S; Kassal I
    J Phys Chem Lett; 2016 Oct; 7(19):3804-3811. PubMed ID: 27610631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast exciton-exciton coherent transfer in molecular aggregates and its application to light-harvesting systems.
    Hyeon-Deuk K; Tanimura Y; Cho M
    J Chem Phys; 2007 Aug; 127(7):075101. PubMed ID: 17718632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Modeling of Exciton-Bath Hamiltonians for Light Harvesting 2 and Light Harvesting 3 Complexes of Purple Photosynthetic Bacteria at Room Temperature.
    Montemayor D; Rivera E; Jang SJ
    J Phys Chem B; 2018 Apr; 122(14):3815-3825. PubMed ID: 29533664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton band structure in bacterial peripheral light-harvesting complexes.
    Trinkunas G; Zerlauskiene O; Urbonienė V; Chmeliov J; Gall A; Robert B; Valkunas L
    J Phys Chem B; 2012 May; 116(17):5192-8. PubMed ID: 22480241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Pulse Shaping on Observing Coherent Energy Transfer in Single Light-Harvesting Complexes.
    Song K; Bai S; Shi Q
    J Phys Chem B; 2016 Nov; 120(45):11637-11643. PubMed ID: 27749066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling to Charge Transfer States is the Key to Modulate the Optical Bands for Efficient Light Harvesting in Purple Bacteria.
    Cupellini L; Caprasecca S; Guido CA; Müh F; Renger T; Mennucci B
    J Phys Chem Lett; 2018 Dec; 9(23):6892-6899. PubMed ID: 30449098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-lying excited states of light-harvesting system II in purple bacteria.
    Zhao Y; Ng MF; Chen G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):032902. PubMed ID: 15089341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-dependent wavelike energy transfer on pigment rings of individual light-harvesting-2 complexes from photosynthetic bacteria.
    Chu QJ; Weng YX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041917. PubMed ID: 20481763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
    Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF
    Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Path Integral Simulation of Exciton-Vibration Dynamics in Light-Harvesting Bacteriochlorophyll Aggregates.
    Kundu S; Makri N
    J Phys Chem Lett; 2020 Oct; 11(20):8783-8789. PubMed ID: 33001649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure and function of bacterial light-harvesting complexes.
    Law CJ; Roszak AW; Southall J; Gardiner AT; Isaacs NW; Cogdell RJ
    Mol Membr Biol; 2004; 21(3):183-91. PubMed ID: 15204626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.