These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25273469)

  • 1. Optical extinction, refractive index, and multiple scattering for suspensions of interacting colloidal particles.
    Parola A; Piazza R; Degiorgio V
    J Chem Phys; 2014 Sep; 141(12):124902. PubMed ID: 25273469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalization of the optical theorem for light scattering from a particle at a planar interface.
    Small A; Fung J; Manoharan VN
    J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2519-25. PubMed ID: 24323012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel inverse method for determining the refractive indices of medium and dispersed particles simultaneously by turbidity measurement.
    Xu S; Liu J; Sun Z; Zhang P
    J Colloid Interface Sci; 2008 Oct; 326(1):110-6. PubMed ID: 18656894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle sizing by laser diffraction spectrometry in the anomalous regime.
    Kusters KA; Wijers JG; Thoenes D
    Appl Opt; 1991 Nov; 30(33):4839-47. PubMed ID: 20717287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. White zein colloidal particles: synthesis and characterization of their optical properties on the single particle level and in concentrated suspensions.
    de Boer FY; Kok RNU; Imhof A; Velikov KP
    Soft Matter; 2018 Apr; 14(15):2870-2878. PubMed ID: 29577127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Polydispersity and Contrast Variation Effects in Colloidal Dispersions.
    Banchio AJ; Nägele G; Ferrante A
    J Colloid Interface Sci; 1998 Dec; 208(2):487-499. PubMed ID: 9845693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.
    Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light scattering by aggregates of large colloidal particles.
    Latimer P; Wamble F
    Appl Opt; 1982 Jul; 21(13):2447-55. PubMed ID: 20396052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of multiple scattering on angle-independent structural color in disordered colloidal materials.
    Hwang V; Stephenson AB; Magkiriadou S; Park JG; Manoharan VN
    Phys Rev E; 2020 Jan; 101(1-1):012614. PubMed ID: 32069652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colors of transparent submicron suspensions on approaching the Rayleigh regime.
    Magatti D; Ferri F; Ragazzi P; Pigazzini MC; Averchi A; Di Trapani P
    Appl Opt; 2012 Apr; 51(12):2183-91. PubMed ID: 22534932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams.
    Ambrosio LA; Hernández-Figueroa HE
    Appl Opt; 2011 Aug; 50(22):4489-98. PubMed ID: 21833125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Tyndall's hypochromism in suspensions].
    Vekshin NL; Frolova MS; Kovalev VI; Begunova EA
    Biofizika; 2015; 60(1):129-35. PubMed ID: 25868350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical theorem for two-dimensional (2D) scalar monochromatic acoustical beams in cylindrical coordinates.
    Mitri FG
    Ultrasonics; 2015 Sep; 62():20-6. PubMed ID: 25773968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the extinction coefficient of light in non-absorbing nanoparticle suspensions.
    Márquez-Islas R; García-Valenzuela A
    Appl Opt; 2018 May; 57(13):3390-3394. PubMed ID: 29726506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended optical theorem for scalar monochromatic acoustical beams of arbitrary wavefront in cylindrical coordinates.
    Mitri FG
    Ultrasonics; 2016 Apr; 67():129-135. PubMed ID: 26836290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Turbid Colloidal Suspensions Using Light Scattering Techniques Combined with Cross-Correlation Methods.
    Urban C; Schurtenberger P
    J Colloid Interface Sci; 1998 Nov; 207(1):150-158. PubMed ID: 9778402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the refractive index of microparticles by utilizing light dispersion properties of the particle and an immersion liquid.
    Niskanen I; Räty J; Peiponen KE
    Talanta; 2013 Oct; 115():68-73. PubMed ID: 24054563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of fractal dimension of colloidal gels in the presence of multiple scattering.
    Lattuada M; Wu H; Morbidelli M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 1):061404. PubMed ID: 11736182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering.
    Johnsen S; Widder EA
    J Theor Biol; 1999 Jul; 199(2):181-98. PubMed ID: 10395813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of refractive index, size, and concentration of nonabsorbing colloidal nanoparticles from measurements of the complex effective refractive index.
    Márquez-Islas R; Sánchez-Pérez C; García-Valenzuela A
    Opt Lett; 2014 Feb; 39(3):559-62. PubMed ID: 24487865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.