These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 25273520)
1. Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene. Gurunathan S; Woong Han J; Kim E; Kwon DN; Park JK; Kim JH J Nanobiotechnology; 2014 Oct; 12():41. PubMed ID: 25273520 [TBL] [Abstract][Full Text] [Related]
2. Green chemistry approach for the synthesis of biocompatible graphene. Gurunathan S; Han JW; Kim JH Int J Nanomedicine; 2013; 8():2719-32. PubMed ID: 23940417 [TBL] [Abstract][Full Text] [Related]
3. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene. Gurunathan S; Han JW; Park JH; Eppakayala V; Kim JH Int J Nanomedicine; 2014; 9():363-77. PubMed ID: 24453487 [TBL] [Abstract][Full Text] [Related]
4. Green synthesis of graphene and its cytotoxic effects in human breast cancer cells. Gurunathan S; Han JW; Eppakayala V; Kim JH Int J Nanomedicine; 2013; 8():1015-27. PubMed ID: 23687445 [TBL] [Abstract][Full Text] [Related]
5. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. Gurunathan S; Han JW; Kim ES; Park JH; Kim JH Int J Nanomedicine; 2015; 10():2951-69. PubMed ID: 25931821 [TBL] [Abstract][Full Text] [Related]
6. A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent. Choi YJ; Kim E; Han J; Kim JH; Gurunathan S Molecules; 2016 Mar; 21(3):375. PubMed ID: 26999102 [TBL] [Abstract][Full Text] [Related]
7. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231). Gurunathan S; Han J; Park JH; Kim JH Int J Nanomedicine; 2014; 9():1783-97. PubMed ID: 24741313 [TBL] [Abstract][Full Text] [Related]
8. Improving dispersive property, biocompatibility and targeting gene transfection of graphene oxide by covalent attachment of polyamidoamine dendrimer and glycyrrhetinic acid. Liu F; Yang D; Liu Y; Cao Q; Sun Y; Wang Q; Tang H Colloids Surf B Biointerfaces; 2018 Nov; 171():622-628. PubMed ID: 30103151 [TBL] [Abstract][Full Text] [Related]
9. A systems toxicology approach to the surface functionality control of graphene-cell interactions. Chatterjee N; Eom HJ; Choi J Biomaterials; 2014 Jan; 35(4):1109-27. PubMed ID: 24211078 [TBL] [Abstract][Full Text] [Related]
10. Systematic Assessment of the Toxicity and Potential Mechanism of Graphene Derivatives In Vitro and In Vivo. Li J; Zhang X; Jiang J; Wang Y; Jiang H; Zhang J; Nie X; Liu B Toxicol Sci; 2019 Jan; 167(1):269-281. PubMed ID: 30239936 [TBL] [Abstract][Full Text] [Related]
11. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Gurunathan S; Han JW; Dayem AA; Eppakayala V; Kim JH Int J Nanomedicine; 2012; 7():5901-14. PubMed ID: 23226696 [TBL] [Abstract][Full Text] [Related]
12. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells. Gurunathan S; Han JW; Eppakayala V; Kim JH Colloids Surf B Biointerfaces; 2013 May; 105():58-66. PubMed ID: 23352948 [TBL] [Abstract][Full Text] [Related]
13. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells. Gurunathan S; Han JW; Eppakayala V; Dayem AA; Kwon DN; Kim JH Nanoscale Res Lett; 2013 Sep; 8(1):393. PubMed ID: 24059222 [TBL] [Abstract][Full Text] [Related]
14. Biocompatibility and hemocompatibility of hydrothermally derived reduced graphene oxide using soluble starch as a reducing agent. Narayanan KB; Kim HD; Han SS Colloids Surf B Biointerfaces; 2020 Jan; 185():110579. PubMed ID: 31689675 [TBL] [Abstract][Full Text] [Related]
15. Impact of Graphene-Based Surfaces on the Basic Biological Properties of Human Umbilical Cord Mesenchymal Stem Cells: Implications for Ex Vivo Cell Expansion Aimed at Tissue Repair. Jagiełło J; Sekuła-Stryjewska M; Noga S; Adamczyk E; Dźwigońska M; Kurcz M; Kurp K; Winkowska-Struzik M; Karnas E; Boruczkowski D; Madeja Z; Lipińska L; Zuba-Surma EK Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540083 [TBL] [Abstract][Full Text] [Related]
16. Biofabrication of a novel biomolecule-assisted reduced graphene oxide: an excellent biocompatible nanomaterial. Zhang XF; Gurunathan S Int J Nanomedicine; 2016; 11():6635-6649. PubMed ID: 27994461 [TBL] [Abstract][Full Text] [Related]
17. Biofabrication of Lysinibacillus sphaericus-reduced graphene oxide in three-dimensional polyacrylamide/carbon nanocomposite hydrogels for skin tissue engineering. Narayanan KB; Choi SM; Han SS Colloids Surf B Biointerfaces; 2019 Sep; 181():539-548. PubMed ID: 31185446 [TBL] [Abstract][Full Text] [Related]
18. In vitro toxicity evaluation of graphene oxide on A549 cells. Chang Y; Yang ST; Liu JH; Dong E; Wang Y; Cao A; Liu Y; Wang H Toxicol Lett; 2011 Feb; 200(3):201-10. PubMed ID: 21130147 [TBL] [Abstract][Full Text] [Related]
19. Low-Cost Synthesis of Smart Biocompatible Graphene Oxide Reduced Species by Means of GFP. Masullo T; Armata N; Pendolino F; Colombo P; Lo Celso F; Mazzola S; Cuttitta A Appl Biochem Biotechnol; 2016 Feb; 178(3):462-73. PubMed ID: 26490379 [TBL] [Abstract][Full Text] [Related]
20. The Structure-Properties-Cytotoxicity Interplay: A Crucial Pathway to Determining Graphene Oxide Biocompatibility. Dziewięcka M; Pawlyta M; Majchrzycki Ł; Balin K; Barteczko S; Czerkawska M; Augustyniak M Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]