BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25273546)

  • 1. Promoting the recovery of injured liver with poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) scaffolds loaded with umbilical cord-derived mesenchymal stem cells.
    Li P; Zhang J; Liu J; Ma H; Liu J; Lie P; Wang Y; Liu G; Zeng H; Li Z; Wei X
    Tissue Eng Part A; 2015 Feb; 21(3-4):603-15. PubMed ID: 25273546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHBVHHx scaffolds loaded with umbilical cord-derived mesenchymal stem cells or hepatocyte-like cells differentiated from these cells for liver tissue engineering.
    Su Z; Li P; Wu B; Ma H; Wang Y; Liu G; Zeng H; Li Z; Wei X
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():374-82. PubMed ID: 25491842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of human umbilical cord Wharton's Jelly-derived mesenchymal stem cells on the terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate).
    Ji GZ; Wei X; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(3):325-39. PubMed ID: 19192359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro.
    Li X; Chang H; Luo H; Wang Z; Zheng G; Lu X; He X; Chen F; Wang T; Liang J; Xu M
    J Biomed Mater Res A; 2015 Mar; 103(3):1169-75. PubMed ID: 25044338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in expression of cartilaginous genes during chondrogenesis of Wharton's jelly mesenchymal stem cells on three-dimensional biodegradable poly(L-lactide-co-glycolide) scaffolds.
    Paduszyński P; Aleksander-Konert E; Zajdel A; Wilczok A; Jelonek K; Witek A; Dzierżewicz Z
    Cell Mol Biol Lett; 2016; 21():14. PubMed ID: 28536617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/collagen hybrid scaffolds for tissue engineering applications.
    Lomas AJ; Webb WR; Han J; Chen GQ; Sun X; Zhang Z; El Haj AJ; Forsyth NR
    Tissue Eng Part C Methods; 2013 Aug; 19(8):577-85. PubMed ID: 23281705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Comparison of Wharton's Jelly and Bone Marrow-Derived Mesenchymal Stromal Cells to Enhance Engraftment of Cord Blood CD34(+) Transplants.
    van der Garde M; van Pel M; Millán Rivero JE; de Graaf-Dijkstra A; Slot MC; Kleinveld Y; Watt SM; Roelofs H; Zwaginga JJ
    Stem Cells Dev; 2015 Nov; 24(22):2649-59. PubMed ID: 26414086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development.
    Mota C; Wang SY; Puppi D; Gazzarri M; Migone C; Chiellini F; Chen GQ; Chiellini E
    J Tissue Eng Regen Med; 2017 Jan; 11(1):175-186. PubMed ID: 24889107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A composite scaffold of Wharton's jelly and chondroitin sulphate loaded with human umbilical cord mesenchymal stem cells repairs articular cartilage defects in rat knee.
    Li Z; Bi Y; Wu Q; Chen C; Zhou L; Qi J; Xie D; Song H; Han Y; Qu P; Zhang K; Wu Y; Yin Q
    J Mater Sci Mater Med; 2021 Mar; 32(4):36. PubMed ID: 33779853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.
    Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA
    Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics and clinical applications of Wharton's jelly-derived mesenchymal stromal cells.
    Liau LL; Ruszymah BHI; Ng MH; Law JX
    Curr Res Transl Med; 2020 Jan; 68(1):5-16. PubMed ID: 31543433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superior performance of co-cultured mesenchymal stem cells and hepatocytes in poly(lactic acid-glycolic acid) scaffolds for the treatment of acute liver failure.
    Liu M; Yang J; Hu W; Zhang S; Wang Y
    Biomed Mater; 2016 Feb; 11(1):015008. PubMed ID: 26836957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silk fibroin film is a promising scaffold for bone tissue engineering.
    Ang SL; Shaharuddin B; Chuah JA; Sudesh K
    Int J Biol Macromol; 2020 Feb; 145():173-188. PubMed ID: 31866541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering.
    Chang HM; Wang ZH; Luo HN; Xu M; Ren XY; Zheng GX; Wu BJ; Zhang XH; Lu XY; Chen F; Jing XH; Wang L
    Braz J Med Biol Res; 2014 Jul; 47(7):533-9. PubMed ID: 25003631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic differentiation of Wharton's jelly-derived mesenchymal stem cells cultured on WJ-scaffold through conventional signalling mechanism.
    Beiki B; Zeynali B; Taghiabadi E; Seyedjafari E; Kehtari M
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1032-S1042. PubMed ID: 30449193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton's jelly of the umbilical cord.
    Zajdel A; Kałucka M; Kokoszka-Mikołaj E; Wilczok A
    Acta Biochim Pol; 2017; 64(2):365-369. PubMed ID: 28600911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infusion of Human Mesenchymal Stem Cells Improves Regenerative Niche in Thioacetamide-Injured Mouse Liver.
    Kao YH; Lin YC; Lee PH; Lin CW; Chen PH; Tai TS; Chang YC; Chou MH; Chang CY; Sun CK
    Tissue Eng Regen Med; 2020 Oct; 17(5):671-682. PubMed ID: 32880852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells.
    Hu YJ; Wei X; Zhao W; Liu YS; Chen GQ
    Acta Biomater; 2009 May; 5(4):1115-25. PubMed ID: 18976972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of human amniotic fluid-derived and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity.
    Bai J; Hu Y; Wang YR; Liu LF; Chen J; Su SP; Wang Y
    J Geriatr Cardiol; 2012 Jun; 9(2):166-71. PubMed ID: 22916064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone Defect Repair Using a Bone Substitute Supported by Mesenchymal Stem Cells Derived from the Umbilical Cord.
    Kosinski M; Figiel-Dabrowska A; Lech W; Wieprzowski L; Strzalkowski R; Strzemecki D; Cheda L; Lenart J; Domanska-Janik K; Sarnowska A
    Stem Cells Int; 2020; 2020():1321283. PubMed ID: 32300364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.