These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25273695)

  • 1. Solute effect on basal and prismatic slip systems of Mg.
    Moitra A; Kim SG; Horstemeyer MF
    J Phys Condens Matter; 2014 Nov; 26(44):445004. PubMed ID: 25273695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution softening in magnesium alloys: the effect of solid solutions on the dislocation core structure and nonbasal slip.
    Tsuru T; Udagawa Y; Yamaguchi M; Itakura M; Kaburaki H; Kaji Y
    J Phys Condens Matter; 2013 Jan; 25(2):022202. PubMed ID: 23220883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized Stacking Fault Energy of {10-11}<11-23> Slip System in Mg-Based Binary Alloys: A First Principles Study.
    Dou Y; Luo H; Zhang J; Tang X
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peierls stress of dislocations in molecular crystal cyclotrimethylene trinitramine.
    Mathew N; Picu CR; Chung PW
    J Phys Chem A; 2013 Jun; 117(25):5326-34. PubMed ID: 23734970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of solute atoms on dislocation motion in Mg: an electronic structure perspective.
    Tsuru T; Chrzan DC
    Sci Rep; 2015 Mar; 5():8793. PubMed ID: 25740411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles study of crystallographic slip modes in ω-Zr.
    Kumar A; Kumar MA; Beyerlein IJ
    Sci Rep; 2017 Aug; 7(1):8932. PubMed ID: 28827649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alloying effects on the plasticity of magnesium: comprehensive analysis of influences of all five slip systems.
    Ding Z; Zhao G; Sun H; Li S; Ma F; Lavernia EJ; Zhu Y; Liu W
    J Phys Condens Matter; 2020 Jan; 32(1):015401. PubMed ID: 31519010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Alloying Elements on the Stacking Fault Energy and Ductility in Mg
    Zhao X; Song K; Huang H; Yan Y; Su Y; Qian P
    ACS Omega; 2021 Aug; 6(31):20254-20263. PubMed ID: 34395974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized stacking fault energies of alloys.
    Li W; Lu S; Hu QM; Kwon SK; Johansson B; Vitos L
    J Phys Condens Matter; 2014 Jul; 26(26):265005. PubMed ID: 24903220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism and energetics of 〈c + a〉 dislocation cross-slip in hcp metals.
    Wu Z; Curtin WA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11137-11142. PubMed ID: 27647908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys.
    Shang SL; Zacherl CL; Fang HZ; Wang Y; Du Y; Liu ZK
    J Phys Condens Matter; 2012 Dec; 24(50):505403. PubMed ID: 23172684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-to-continuum prediction of ductility loss in aluminium-magnesium alloys due to dynamic strain aging.
    Keralavarma SM; Bower AF; Curtin WA
    Nat Commun; 2014 Aug; 5():4604. PubMed ID: 25087924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic origin of solid solution softening in bcc molybdenum alloys.
    Medvedeva NI; Gornostyrev YN; Freeman AJ
    Phys Rev Lett; 2005 Apr; 94(13):136402. PubMed ID: 15904008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of transition metal solutes on the dislocation core structure and values of the Peierls stress and barrier in tungsten.
    Samolyuk GD; Osetsky YN; Stoller RE
    J Phys Condens Matter; 2013 Jan; 25(2):025403. PubMed ID: 23197153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-Principles Calculations of Oxygen-Dislocation Interaction in Magnesium.
    Fang C; Zhang J; Huang Y; Chen J
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31887975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic origin and prediction of enhanced ductility in magnesium alloys.
    Wu Z; Ahmad R; Yin B; Sandlöbes S; Curtin WA
    Science; 2018 Jan; 359(6374):447-452. PubMed ID: 29371467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles study of secondary slip in zirconium.
    Chaari N; Clouet E; Rodney D
    Phys Rev Lett; 2014 Feb; 112(7):075504. PubMed ID: 24579613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transferable local pseudopotentials for magnesium, aluminum and silicon.
    Huang C; Carter EA
    Phys Chem Chem Phys; 2008 Dec; 10(47):7109-20. PubMed ID: 19039345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles calculations for understanding microstructures and mechanical properties of co-sputtered Al alloys.
    Gong M; Wu W; Xie D; Richter NA; Li Q; Zhang Y; Xue S; Zhang X; Wang J
    Nanoscale; 2021 Sep; 13(35):14987-15001. PubMed ID: 34533161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy investigation of effects of O on mechanical properties of NiAl intermetallics.
    Hu XL; Liu LH; Zhang Y; Lu GH; Wang T
    J Phys Condens Matter; 2011 Jan; 23(2):025501. PubMed ID: 21406842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.