These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 25273786)

  • 1. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: application to pure copper, platinum, tungsten, and nickel at very high temperatures.
    Abadlia L; Gasser F; Khalouk K; Mayoufi M; Gasser JG
    Rev Sci Instrum; 2014 Sep; 85(9):095121. PubMed ID: 25273786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials.
    Fu Q; Xiong Y; Zhang W; Xu D
    Rev Sci Instrum; 2017 Sep; 88(9):095111. PubMed ID: 28964241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the resistivity and absolute thermoelectric power of disordered metals and alloys.
    Gasser JG
    J Phys Condens Matter; 2008 Mar; 20(11):114103. PubMed ID: 21694196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparatus for the measurement of electrical resistivity, Seebeck coefficient, and thermal conductivity of thermoelectric materials between 300 K and 12 K.
    Martin J; Nolas GS
    Rev Sci Instrum; 2016 Jan; 87(1):015105. PubMed ID: 26827351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.
    Kraemer D; Chen G
    Rev Sci Instrum; 2014 Apr; 85(4):045107. PubMed ID: 24784659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental setup for the simultaneous measurement of thermoelectric power of two samples from 77 K to 500 K.
    Tripathi TS; Bala M; Asokan K
    Rev Sci Instrum; 2014 Aug; 85(8):085115. PubMed ID: 25173320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty analysis for common Seebeck and electrical resistivity measurement systems.
    Mackey J; Dynys F; Sehirlioglu A
    Rev Sci Instrum; 2014 Aug; 85(8):085119. PubMed ID: 25173324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CaMn(1-x)Nb(x)O3 (x < or = 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials.
    Bocher L; Aguirre MH; Logvinovich D; Shkabko A; Robert R; Trottmann M; Weidenkaff A
    Inorg Chem; 2008 Sep; 47(18):8077-85. PubMed ID: 18698764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High temperature Z-meter setup for characterizing thermoelectric material under large temperature gradient.
    Amatya R; Mayer PM; Ram RJ
    Rev Sci Instrum; 2012 Jul; 83(7):075117. PubMed ID: 22852734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon-limited transport coefficients in extrinsic graphene.
    Muñoz E
    J Phys Condens Matter; 2012 May; 24(19):195302. PubMed ID: 22517027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional probes for high-throughput measurement of Seebeck coefficient and electrical conductivity at room temperature.
    García-Cañadas J; Min G
    Rev Sci Instrum; 2014 Apr; 85(4):043906. PubMed ID: 24784625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal and Electronic Transport Properties of the Half-Heusler Phase ScNiSb.
    Synoradzki K; Ciesielski K; Veremchuk I; Borrmann H; Skokowski P; Szymański D; Grin Y; Kaczorowski D
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31137868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement system of the Seebeck coefficient or of the electrical resistivity at high temperature.
    Rouleau O; Alleno E
    Rev Sci Instrum; 2013 Oct; 84(10):105103. PubMed ID: 24182159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large Seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion.
    Miao L; Tanemura S; Huang R; Liu CY; Huang CM; Xu G
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2355-9. PubMed ID: 20735107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glassy thermal conductivity in the two-phase Cu(x)Ag(3-x)SbSeTe(2) alloy and high temperature thermoelectric behavior.
    Drymiotis F; Drye T; Rhodes D; Zhang Q; Lashey JC; Wang Y; Cawthorne S; Ma B; Lindsey S; Tritt T
    J Phys Condens Matter; 2010 Jan; 22(3):035801. PubMed ID: 21386296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental apparatus for simultaneously measuring Seebeck coefficient and electrical resistivity from 100 K to 600 K.
    Guan A; Wang H; Jin H; Chu W; Guo Y; Lu G
    Rev Sci Instrum; 2013 Apr; 84(4):043903. PubMed ID: 23635205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous measurement of all thermoelectric properties of bulk materials in the temperature range 300-600 K.
    Kolb H; Dasgupta T; Zabrocki K; Mueller E; de Boor J
    Rev Sci Instrum; 2015 Jul; 86(7):073901. PubMed ID: 26233393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An apparatus for concurrent measurement of thermoelectric material parameters.
    Kallaher RL; Latham CA; Sharifi F
    Rev Sci Instrum; 2013 Jan; 84(1):013907. PubMed ID: 23387668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722.
    Kieslich G; Veremchuk I; Antonyshyn I; Zeier WG; Birkel CS; Weldert K; Heinrich CP; Visnow E; Panthöfer M; Burkhardt U; Grin Y; Tremel W
    Phys Chem Chem Phys; 2013 Oct; 15(37):15399-403. PubMed ID: 23936907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.