These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25273917)

  • 1. Magnetic resonance imaging of ionic currents in solution: the effect of magnetohydrodynamic flow.
    Balasubramanian M; Mulkern RV; Wells WM; Sundaram P; Orbach DB
    Magn Reson Med; 2015 Oct; 74(4):1145-55. PubMed ID: 25273917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of magnetohydrodynamic effects in magnetic resonance electrical impedance tomography at ultra-high magnetic fields.
    Minhas AS; Chauhan M; Fu F; Sadleir R
    Magn Reson Med; 2019 Apr; 81(4):2264-2276. PubMed ID: 30450638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing cerebrospinal fluid flow connectivity using 3D gradient echo phase contrast velocity encoded MRI.
    Odéen H; Uppman M; Markl M; Spottiswoode BS
    Physiol Meas; 2011 Apr; 32(4):407-21. PubMed ID: 21343652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of spatial BOLD sensitivity variations in fMRI using gradient-echo field maps.
    Mannfolk P; Wirestam R; Nilsson M; van Westen D; Ståhlberg F; Olsrud J
    Magn Reson Imaging; 2010 Sep; 28(7):947-56. PubMed ID: 20573463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial attempts at directly detecting alpha wave activity in the brain using MRI.
    Konn D; Leach S; Gowland P; Bowtell R
    Magn Reson Imaging; 2004 Dec; 22(10):1413-27. PubMed ID: 15707791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lorentz effect imaging of ionic currents in solution.
    Truong TK; Avram A; Song AW
    J Magn Reson; 2008 Mar; 191(1):93-9. PubMed ID: 18180187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the biomechanical state of intracranial tissues by dynamic MRI of cerebrospinal fluid pulsations: a phantom study.
    Chu D; Levin DN; Alperin N
    Magn Reson Imaging; 1998 Nov; 16(9):1043-8. PubMed ID: 9839988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro study to simulate the intracardiac magnetohydrodynamic effect.
    Buchenberg WB; Mader W; Hoppe G; Lorenz R; Menza M; Büchert M; Timmer J; Jung B
    Magn Reson Med; 2015 Sep; 74(3):850-7. PubMed ID: 25224650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetohydrodynamic flow imaging of ionic solutions using electrical current injection and MR phase measurements.
    Eroğlu HH; Sadighi M; Eyüboğlu BM
    J Magn Reson; 2019 Jun; 303():128-137. PubMed ID: 31063921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of nanotesla AC magnetic fields using steady-state SIRS and ultra-low field MRI.
    Sveinsson B; Koonjoo N; Zhu B; Witzel T; Rosen MS
    J Neural Eng; 2020 Jun; 17(3):034001. PubMed ID: 32268305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of BOLD-fMRI and VEP recordings for spin-echo MRI detection of primary magnetic effects caused by neuronal currents.
    Bianciardi M; Di Russo F; Aprile T; Maraviglia B; Hagberg GE
    Magn Reson Imaging; 2004 Dec; 22(10):1429-40. PubMed ID: 15707792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic susceptibility-induced echo-time shifts: Is there a bias in age-related fMRI studies?
    Ngo GC; Wong CN; Guo S; Paine T; Kramer AF; Sutton BP
    J Magn Reson Imaging; 2017 Jan; 45(1):207-214. PubMed ID: 27299727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging.
    Uludağ K; Müller-Bierl B; Uğurbil K
    Neuroimage; 2009 Oct; 48(1):150-65. PubMed ID: 19481163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive study of sensitivity in measuring oscillatory magnetic fields using rotary saturation pulse sequences.
    Sheng J; Liu Y; Chai Y; Tang W; Wu B; Gao JH
    Magn Reson Imaging; 2016 Apr; 34(3):326-33. PubMed ID: 26616004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal.
    Logothetis NK
    Philos Trans R Soc Lond B Biol Sci; 2002 Aug; 357(1424):1003-37. PubMed ID: 12217171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronized detection of minute electrical currents with MRI using Lorentz effect imaging.
    Truong TK; Wilbur JL; Song AW
    J Magn Reson; 2006 Mar; 179(1):85-91. PubMed ID: 16343959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Understanding of cerebrospinal fluid hydrodynamics in idiopathic hydrocephalus (A) Visualization of CSF bulk flow with MRI time-spatial labeling pulse method (time-SLIP)].
    Yamada S; Goto T
    Rinsho Shinkeigaku; 2010 Nov; 50(11):966-70. PubMed ID: 21921529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of three artificial models of the magnetohydrodynamic effect on the electrocardiogram.
    Oster J; Llinares R; Payne S; Tse ZT; Schmidt EJ; Clifford GD
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1400-17. PubMed ID: 24761753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MR imaging of oscillatory magnetic field changes: Progressing from phantom to human.
    Chai Y; Sheng J; Men W; Fan Y; Wu B; Gao JH
    Magn Reson Imaging; 2017 Feb; 36():167-174. PubMed ID: 27826081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transients may occur in functional magnetic resonance imaging without physiological basis.
    Renvall V; Hari R
    Proc Natl Acad Sci U S A; 2009 Dec; 106(48):20510-4. PubMed ID: 19918078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.