BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

770 related articles for article (PubMed ID: 25274213)

  • 21. From microbe to man: the role of microbial short chain fatty acid metabolites in host cell biology.
    Natarajan N; Pluznick JL
    Am J Physiol Cell Physiol; 2014 Dec; 307(11):C979-85. PubMed ID: 25273884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial fermentation of flaxseed fibers modulates the transcriptome of GPR41-expressing enteroendocrine cells and protects mice against diet-induced obesity.
    Arora T; Rudenko O; Egerod KL; Husted AS; Kovatcheva-Datchary P; Akrami R; Kristensen M; Schwartz TW; Bäckhed F
    Am J Physiol Endocrinol Metab; 2019 Mar; 316(3):E453-E463. PubMed ID: 30562060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From gut microbiota dysfunction to obesity: could short-chain fatty acids stop this dangerous course?
    Barrea L; Muscogiuri G; Annunziata G; Laudisio D; Pugliese G; Salzano C; Colao A; Savastano S
    Hormones (Athens); 2019 Sep; 18(3):245-250. PubMed ID: 30840230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free fatty acid receptor 3 is a key target of short chain fatty acid. What is the impact on the sympathetic nervous system?
    López Soto EJ; Gambino LO; Mustafá ER
    Channels (Austin); 2014; 8(3):169-71. PubMed ID: 24762451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of short-chain fatty acids in health and disease.
    Tan J; McKenzie C; Potamitis M; Thorburn AN; Mackay CR; Macia L
    Adv Immunol; 2014; 121():91-119. PubMed ID: 24388214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon.
    Christiansen CB; Gabe MBN; Svendsen B; Dragsted LO; Rosenkilde MM; Holst JJ
    Am J Physiol Gastrointest Liver Physiol; 2018 Jul; 315(1):G53-G65. PubMed ID: 29494208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity.
    Remely M; Aumueller E; Merold C; Dworzak S; Hippe B; Zanner J; Pointner A; Brath H; Haslberger AG
    Gene; 2014 Mar; 537(1):85-92. PubMed ID: 24325907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of Energy Homeostasis by GPR41.
    Inoue D; Tsujimoto G; Kimura I
    Front Endocrinol (Lausanne); 2014; 5():81. PubMed ID: 24904531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.
    Maslowski KM; Vieira AT; Ng A; Kranich J; Sierro F; Yu D; Schilter HC; Rolph MS; Mackay F; Artis D; Xavier RJ; Teixeira MM; Mackay CR
    Nature; 2009 Oct; 461(7268):1282-6. PubMed ID: 19865172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases.
    Sun M; Wu W; Liu Z; Cong Y
    J Gastroenterol; 2017 Jan; 52(1):1-8. PubMed ID: 27448578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Free Fatty Acid Receptors in Health and Disease.
    Kimura I; Ichimura A; Ohue-Kitano R; Igarashi M
    Physiol Rev; 2020 Jan; 100(1):171-210. PubMed ID: 31487233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short-Chain Fatty Acid Receptors and Cardiovascular Function.
    Lymperopoulos A; Suster MS; Borges JI
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome.
    Macia L; Tan J; Vieira AT; Leach K; Stanley D; Luong S; Maruya M; Ian McKenzie C; Hijikata A; Wong C; Binge L; Thorburn AN; Chevalier N; Ang C; Marino E; Robert R; Offermanns S; Teixeira MM; Moore RJ; Flavell RA; Fagarasan S; Mackay CR
    Nat Commun; 2015 Apr; 6():6734. PubMed ID: 25828455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The nutrition-gut microbiome-physiology axis and allergic diseases.
    McKenzie C; Tan J; Macia L; Mackay CR
    Immunol Rev; 2017 Jul; 278(1):277-295. PubMed ID: 28658542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short-Chain Fatty Acids, Maternal Microbiota and Metabolism in Pregnancy.
    Ziętek M; Celewicz Z; Szczuko M
    Nutrients; 2021 Apr; 13(4):. PubMed ID: 33918804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning, molecular characterization, and spatial and developmental expression analysis of GPR41 and GPR43 genes in New Zealand rabbits.
    Fu CY; Liu L; Gao Q; Sui XY; Li FC
    Animal; 2017 Oct; 11(10):1798-1806. PubMed ID: 28241897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short-chain fatty acids in control of energy metabolism.
    Hu J; Lin S; Zheng B; Cheung PCK
    Crit Rev Food Sci Nutr; 2018 May; 58(8):1243-1249. PubMed ID: 27786539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulatory effect of Lactobacillus acidophilus KLDS 1.0738 on intestinal short-chain fatty acids metabolism and GPR41/43 expression in β-lactoglobulin-sensitized mice.
    Wang JJ; Zhang QM; Ni WW; Zhang X; Li Y; Li AL; Du P; Li C; Yu SS
    Microbiol Immunol; 2019 Aug; 63(8):303-315. PubMed ID: 31218724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis.
    Portincasa P; Bonfrate L; Vacca M; De Angelis M; Farella I; Lanza E; Khalil M; Wang DQ; Sperandio M; Di Ciaula A
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perspectives on the therapeutic potential of short-chain fatty acid receptors.
    Kim S; Kim JH; Park BO; Kwak YS
    BMB Rep; 2014 Mar; 47(3):173-8. PubMed ID: 24499669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.