These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 25274349)

  • 1. Retention and interference of learned dexterous manipulation: interaction between multiple sensorimotor processes.
    Fu Q; Santello M
    J Neurophysiol; 2015 Jan; 113(1):144-55. PubMed ID: 25274349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learned manipulation at unconstrained contacts does not transfer across hands.
    Fu Q; Choi JY; Gordon AM; Jesunathadas M; Santello M
    PLoS One; 2014; 9(9):e108222. PubMed ID: 25233091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torque-planning errors affect the perception of object properties and sensorimotor memories during object manipulation in uncertain grasp situations.
    Schneider TR; Buckingham G; Hermsdörfer J
    J Neurophysiol; 2019 Apr; 121(4):1289-1299. PubMed ID: 30759041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation after object rotation reveals independent sensorimotor memory representations of digit positions and forces.
    Zhang W; Gordon AM; Fu Q; Santello M
    J Neurophysiol; 2010 Jun; 103(6):2953-64. PubMed ID: 20357064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalization of Dexterous Manipulation Is Sensitive to the Frame of Reference in Which It Is Learned.
    Marneweck M; Knelange E; Lee-Miller T; Santello M; Gordon AM
    PLoS One; 2015; 10(9):e0138258. PubMed ID: 26376089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Context-dependent learning interferes with visuomotor transformations for manipulation planning.
    Fu Q; Santello M
    J Neurosci; 2012 Oct; 32(43):15086-92. PubMed ID: 23100429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dexterous manipulation: differential sensitivity of manipulation and grasp forces to task requirements.
    Noll WP; Wu YH; Santello M
    J Neurophysiol; 2024 Jul; 132(1):259-276. PubMed ID: 38863425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grasping uncertainty: effects of sensorimotor memories on high-level planning of dexterous manipulation.
    Lukos JR; Choi JY; Santello M
    J Neurophysiol; 2013 Jun; 109(12):2937-46. PubMed ID: 23554435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of aging on conditional visuomotor learning for grasping and lifting eccentrically weighted objects.
    Rao N; Mehta N; Patel P; Parikh PJ
    J Appl Physiol (1985); 2021 Sep; 131(3):937-948. PubMed ID: 34264127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensorimotor memory of object weight distribution during multidigit grasp.
    Albert F; Santello M; Gordon AM
    Neurosci Lett; 2009 Oct; 463(3):188-93. PubMed ID: 19647782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural oscillations reflect latent learning states underlying dual-context sensorimotor adaptation.
    Fine JM; Moore D; Santello M
    Neuroimage; 2017 Dec; 163():93-105. PubMed ID: 28919408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Material evidence: interaction of well-learned priors and sensorimotor memory when lifting objects.
    Baugh LA; Kao M; Johansson RS; Flanagan JR
    J Neurophysiol; 2012 Sep; 108(5):1262-9. PubMed ID: 22696542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a specific internal representation of motion-force relationships during object manipulation.
    Mah CD; Mussa-Ivaldi FA
    Biol Cybern; 2003 Jan; 88(1):60-72. PubMed ID: 12545283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segregation between acquisition and long-term memory in sensorimotor learning.
    Zach N; Kanarek N; Inbar D; Grinvald Y; Milestein T; Vaadia E
    Eur J Neurosci; 2005 Nov; 22(9):2357-62. PubMed ID: 16262674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interference from mere thinking: mental rehearsal temporarily disrupts recall of motor memory.
    Yin C; Wei K
    J Neurophysiol; 2014 Aug; 112(3):594-602. PubMed ID: 24805082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer of learned manipulation following changes in degrees of freedom.
    Fu Q; Hasan Z; Santello M
    J Neurosci; 2011 Sep; 31(38):13576-84. PubMed ID: 21940448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive control of grip force to compensate for static and dynamic torques during object manipulation.
    Crevecoeur F; Giard T; Thonnard JL; Lefèvre P
    J Neurophysiol; 2011 Dec; 106(6):2973-81. PubMed ID: 21940610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand.
    Panarese A; Edin BB; Vecchi F; Carrozza MC; Johansson RS
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):560-7. PubMed ID: 19457753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection criteria for preparatory object rotation in manual lifting actions.
    Chang LY; Klatzky RL; Pollard NS
    J Mot Behav; 2010; 42(1):11-27. PubMed ID: 19906635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independent learning of internal models for kinematic and dynamic control of reaching.
    Krakauer JW; Ghilardi MF; Ghez C
    Nat Neurosci; 1999 Nov; 2(11):1026-31. PubMed ID: 10526344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.