These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 25274426)
1. Dynamics in next-generation solar cells: time-resolved surface photovoltage measurements of quantum dots chemically linked to ZnO (101[combining macron]0). Spencer BF; Cliffe MJ; Graham DM; Hardman SJ; Seddon EA; Syres KL; Thomas AG; Sirotti F; Silly MG; Akhtar J; O'Brien P; Fairclough SM; Smith JM; Chattopadhyay S; Flavell WR Faraday Discuss; 2014; 171():275-98. PubMed ID: 25274426 [TBL] [Abstract][Full Text] [Related]
2. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107 [TBL] [Abstract][Full Text] [Related]
3. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. Tian J; Zhang Q; Zhang L; Gao R; Shen L; Zhang S; Qu X; Cao G Nanoscale; 2013 Feb; 5(3):936-43. PubMed ID: 23166058 [TBL] [Abstract][Full Text] [Related]
4. CuO quantum-dot-sensitized mesoporous ZnO for visible-light photocatalysis. Liu Y; Shi J; Peng Q; Li Y Chemistry; 2013 Mar; 19(13):4319-26. PubMed ID: 23447144 [TBL] [Abstract][Full Text] [Related]
5. Oxygen-assisted charge transfer between ZnO quantum dots and graphene. Guo W; Xu S; Wu Z; Wang N; Loy MM; Du S Small; 2013 Sep; 9(18):3031-6. PubMed ID: 23520196 [TBL] [Abstract][Full Text] [Related]
6. Trace amounts of Cu²⁺ ions influence ROS production and cytotoxicity of ZnO quantum dots. Moussa H; Merlin C; Dezanet C; Balan L; Medjahdi G; Ben-Attia M; Schneider R J Hazard Mater; 2016 Mar; 304():532-42. PubMed ID: 26619052 [TBL] [Abstract][Full Text] [Related]
7. ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells. Li C; Yang L; Xiao J; Wu YC; Søndergaard M; Luo Y; Li D; Meng Q; Iversen BB Phys Chem Chem Phys; 2013 Jun; 15(22):8710-5. PubMed ID: 23639947 [TBL] [Abstract][Full Text] [Related]
8. Photoluminescence properties of highly dispersed ZnO quantum dots in polyvinylpyrrolidone nanotubes prepared by a single capillary electrospinning. Li XH; Shao CL; Liu YC; Chu XY; Wang CH; Zhang BX J Chem Phys; 2008 Sep; 129(11):114708. PubMed ID: 19044981 [TBL] [Abstract][Full Text] [Related]
9. The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells. Willis SM; Cheng C; Assender HE; Watt AA Nano Lett; 2012 Mar; 12(3):1522-6. PubMed ID: 22300421 [TBL] [Abstract][Full Text] [Related]
10. Non-adiabatic molecular dynamics investigation of photoionization state formation and lifetime in Mn²⁺-doped ZnO quantum dots. Fischer SA; Lingerfelt DB; May JW; Li X Phys Chem Chem Phys; 2014 Sep; 16(33):17507-14. PubMed ID: 25019366 [TBL] [Abstract][Full Text] [Related]
11. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Wu K; Zhu H; Lian T Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713 [TBL] [Abstract][Full Text] [Related]
12. An energy-harvesting scheme employing CuGaSe2 quantum dot-modified ZnO buffer layers for drastic conversion efficiency enhancement in inorganic-organic hybrid solar cells. Ho CR; Tsai ML; Jhuo HJ; Lien DH; Lin CA; Tsai SH; Wei TC; Huang KP; Chen SA; He JH Nanoscale; 2013 Jul; 5(14):6350-5. PubMed ID: 23455444 [TBL] [Abstract][Full Text] [Related]
13. Highly luminescent CdTe/CdS/ZnO core/shell/shell quantum dots fabricated using an aqueous strategy. Zhimin Yuan ; Wang J; Yang P Luminescence; 2013; 28(2):169-75. PubMed ID: 22511616 [TBL] [Abstract][Full Text] [Related]
14. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Bi D; Boschloo G; Schwarzmüller S; Yang L; Johansson EM; Hagfeldt A Nanoscale; 2013 Dec; 5(23):11686-91. PubMed ID: 24100947 [TBL] [Abstract][Full Text] [Related]
15. Highly transparent phototransistor based on quantum-dots and ZnO bilayers for optical logic gate operation in visible-light. Kim BJ; Cho NK; Park S; Jeong S; Jeon D; Kang Y; Kim T; Kim YS; Han IK; Kang SJ RSC Adv; 2020 Apr; 10(28):16404-16414. PubMed ID: 35498875 [TBL] [Abstract][Full Text] [Related]
16. Energy level alignment in CdS quantum dot sensitized solar cells using molecular dipoles. Shalom M; Rühle S; Hod I; Yahav S; Zaban A J Am Chem Soc; 2009 Jul; 131(29):9876-7. PubMed ID: 19583203 [TBL] [Abstract][Full Text] [Related]
17. Continuous flow scale-up of biofunctionalized defective ZnO quantum dots: A safer inorganic ingredient for skin UV protection. Sarkar S; Debnath SK; Srivastava R; Kulkarni AR Acta Biomater; 2022 Jul; 147():377-390. PubMed ID: 35609802 [TBL] [Abstract][Full Text] [Related]
18. In(1-x)Ga(x)N@ZnO: a rationally designed and quantum dot integrated material for water splitting and solar harvesting applications. Rajaambal S; Mapa M; Gopinath CS Dalton Trans; 2014 Sep; 43(33):12546-54. PubMed ID: 25004908 [TBL] [Abstract][Full Text] [Related]
19. Sol-gel growth of hexagonal faceted ZnO prism quantum dots with polar surfaces for enhanced photocatalytic activity. Zhang L; Yin L; Wang C; Lun N; Qi Y ACS Appl Mater Interfaces; 2010 Jun; 2(6):1769-73. PubMed ID: 20499872 [TBL] [Abstract][Full Text] [Related]
20. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency. Yuan Z; Yin L Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]