BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 25274704)

  • 1. Expanding the epigenetic landscape: novel modifications of cytosine in genomic DNA.
    Kriaucionis S; Tahiliani M
    Cold Spring Harb Perspect Biol; 2014 Oct; 6(10):a018630. PubMed ID: 25274704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic distribution and possible functions of DNA hydroxymethylation in the brain.
    Wen L; Tang F
    Genomics; 2014 Nov; 104(5):341-6. PubMed ID: 25205307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tet family proteins and 5-hydroxymethylcytosine in development and disease.
    Tan L; Shi YG
    Development; 2012 Jun; 139(11):1895-902. PubMed ID: 22569552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charting oxidized methylcytosines at base resolution.
    Wu H; Zhang Y
    Nat Struct Mol Biol; 2015 Sep; 22(9):656-61. PubMed ID: 26333715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of ten-eleven translocation proteins and 5-hydroxymethylcytosine in hepatocellular carcinoma.
    Wang P; Yan Y; Yu W; Zhang H
    Cell Prolif; 2019 Jul; 52(4):e12626. PubMed ID: 31033072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation.
    Wu H; Zhang Y
    Genes Dev; 2011 Dec; 25(23):2436-52. PubMed ID: 22156206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-Hydroxymethylcytosine: generation, fate, and genomic distribution.
    Shen L; Zhang Y
    Curr Opin Cell Biol; 2013 Jun; 25(3):289-96. PubMed ID: 23498661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Resolution Analysis of 5-Hydroxymethylcytosine by TET-Assisted Bisulfite Sequencing.
    Huang Z; Meng Y; Szabó PE; Kohli RM; Pfeifer GP
    Methods Mol Biol; 2021; 2198():321-331. PubMed ID: 32822042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro.
    Bian K; Lenz SAP; Tang Q; Chen F; Qi R; Jost M; Drennan CL; Essigmann JM; Wetmore SD; Li D
    Nucleic Acids Res; 2019 Jun; 47(11):5522-5529. PubMed ID: 31114894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleic acid modifications with epigenetic significance.
    Fu Y; He C
    Curr Opin Chem Biol; 2012 Dec; 16(5-6):516-24. PubMed ID: 23092881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insight into substrate preference for TET-mediated oxidation.
    Hu L; Lu J; Cheng J; Rao Q; Li Z; Hou H; Lou Z; Zhang L; Li W; Gong W; Liu M; Sun C; Yin X; Li J; Tan X; Wang P; Wang Y; Fang D; Cui Q; Yang P; He C; Jiang H; Luo C; Xu Y
    Nature; 2015 Nov; 527(7576):118-22. PubMed ID: 26524525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-Hydroxymethylcytosine: An epigenetic mark frequently deregulated in cancer.
    Kroeze LI; van der Reijden BA; Jansen JH
    Biochim Biophys Acta; 2015 Apr; 1855(2):144-54. PubMed ID: 25579174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-Hydroxymethylcytosine--the elusive epigenetic mark in mammalian DNA.
    Kriukienė E; Liutkevičiūtė Z; Klimašauskas S
    Chem Soc Rev; 2012 Nov; 41(21):6916-30. PubMed ID: 22842880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-Methylcytosine is Oxidized to the Natural Metabolites of TET Enzymes by a Biomimetic Iron(IV)-Oxo Complex.
    Jonasson NSW; Daumann LJ
    Chemistry; 2019 Sep; 25(52):12091-12097. PubMed ID: 31211459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The curious chemical biology of cytosine: deamination, methylation, and oxidation as modulators of genomic potential.
    Nabel CS; Manning SA; Kohli RM
    ACS Chem Biol; 2012 Jan; 7(1):20-30. PubMed ID: 22004246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of 5-hydroxymethylcytosine in development, aging and age-related diseases.
    López V; Fernández AF; Fraga MF
    Ageing Res Rev; 2017 Aug; 37():28-38. PubMed ID: 28499883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword.
    Ito S; Kuraoka I
    DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TET enzymes and DNA hydroxymethylation in neural development and function - how critical are they?
    Santiago M; Antunes C; Guedes M; Sousa N; Marques CJ
    Genomics; 2014 Nov; 104(5):334-40. PubMed ID: 25200796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinguishing Active Versus Passive DNA Demethylation Using Illumina MethylationEPIC BeadChip Microarrays.
    Tiedemann RL; Eden HE; Huang Z; Robertson KD; Rothbart SB
    Methods Mol Biol; 2021; 2272():97-140. PubMed ID: 34009611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in DNA methylation: 5-hydroxymethylcytosine revisited.
    Dahl C; Grønbæk K; Guldberg P
    Clin Chim Acta; 2011 May; 412(11-12):831-6. PubMed ID: 21324307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.