These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 25275215)

  • 1. Brush/gold nanoparticle hybrids: effect of grafting density on the particle uptake and distribution within weak polyelectrolyte brushes.
    Christau S; Möller T; Yenice Z; Genzer J; von Klitzing R
    Langmuir; 2014 Nov; 30(43):13033-41. PubMed ID: 25275215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-induced swelling and deswelling of weak polybase brushes.
    Weir MP; Heriot SY; Martin SJ; Parnell AJ; Holt SA; Webster JR; Jones RA
    Langmuir; 2011 Sep; 27(17):11000-7. PubMed ID: 21793596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoresponsive PDMAEMA Brushes: Effect of Gold Nanoparticle Deposition.
    Yenice Z; Schön S; Bildirir H; Genzer J; von Klitzing R
    J Phys Chem B; 2015 Aug; 119(32):10348-58. PubMed ID: 26132296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High capacity, charge-selective protein uptake by polyelectrolyte brushes.
    Kusumo A; Bombalski L; Lin Q; Matyjaszewski K; Schneider JW; Tilton RD
    Langmuir; 2007 Apr; 23(8):4448-54. PubMed ID: 17358090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable polymer brush/Au NPs hybrid plasmonic arrays based on host-guest interaction.
    Fang L; Li Y; Chen Z; Liu W; Zhang J; Xiang S; Shen H; Li Z; Yang B
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19951-7. PubMed ID: 25347749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile method to prepare smooth and homogeneous polymer brush surfaces of varied brush thickness and grafting density.
    Wang S; Zhu Y
    Langmuir; 2009 Dec; 25(23):13448-55. PubMed ID: 19863074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pickering emulsions stabilized by nanoparticles with thermally responsive grafted polymer brushes.
    Saigal T; Dong H; Matyjaszewski K; Tilton RD
    Langmuir; 2010 Oct; 26(19):15200-9. PubMed ID: 20831185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous fabrication of pH-gated, polymer-brush-modified alumina hybrid membranes.
    Sugnaux C; Lavanant L; Klok HA
    Langmuir; 2013 Jun; 29(24):7325-33. PubMed ID: 23391159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-responsive one-dimensional periodic relief grating of polymer brush-gold nanoassemblies on silicon surface.
    Chen JK; Pai PC; Chang JY; Fan SK
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):1935-47. PubMed ID: 22423620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ spectroscopic ellipsometry of pH-responsive polymer brushes on gold substrates.
    Rauch S; Uhlmann P; Eichhorn KJ
    Anal Bioanal Chem; 2013 Nov; 405(28):9061-9. PubMed ID: 23812852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of pH-Sensitive Gold Nanoparticles in Strong Polyelectrolyte Brushes.
    Kesal D; Christau S; Krause P; Möller T; Von Klitzing R
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.
    Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y
    Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron reflectivity study of the structure of pH-responsive polymer brushes grown from a macroinitiator at the sapphire-water interface.
    Moglianetti M; Webster JR; Edmondson S; Armes SP; Titmuss S
    Langmuir; 2010 Aug; 26(15):12684-9. PubMed ID: 20583764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of Cell Attachment and Spreading on Poly(acrylamide) Brushes with Varied Grafting Density.
    Lilge I; Schönherr H
    Langmuir; 2016 Jan; 32(3):838-47. PubMed ID: 26771447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimuli-responsive spherical brushes based on D-galactopyranose and 2-(dimethylamino)ethyl methacrylate.
    Arslan H; Pfaff A; Lu Y; Stepanek P; Müller AH
    Macromol Biosci; 2014 Jan; 14(1):81-91. PubMed ID: 24106068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combinatorial approach to study solvent-induced self-assembly of mixed poly(methyl methacrylate)/polystyrene brushes on planar silica substrates: effect of relative grafting density.
    Zhao B
    Langmuir; 2004 Dec; 20(26):11748-55. PubMed ID: 15595807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.
    Roiter Y; Minko I; Nykypanchuk D; Tokarev I; Minko S
    Nanoscale; 2012 Jan; 4(1):284-92. PubMed ID: 22081128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.
    Nair N; Wentzel N; Jayaraman A
    J Chem Phys; 2011 May; 134(19):194906. PubMed ID: 21599087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One step ATRP initiator immobilization on surfaces leading to gradient-grafted polymer brushes.
    Coad BR; Styan KE; Meagher L
    ACS Appl Mater Interfaces; 2014 May; 6(10):7782-9. PubMed ID: 24783968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.