These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25275373)

  • 1. Dip TIPS as a facile and versatile method for fabrication of polymer foams with controlled shape, size and pore architecture for bioengineering applications.
    Kasoju N; Kubies D; Kumorek MM; Kříž J; Fábryová E; Machová L; Kovářová J; Rypáček F
    PLoS One; 2014; 9(9):e108792. PubMed ID: 25275373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent.
    Li S; Chen X; Li M
    Prep Biochem Biotechnol; 2011; 41(1):53-72. PubMed ID: 21229464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation.
    Kasoju N; Kubies D; Sedlačík T; Janoušková O; Koubková J; Kumorek MM; Rypáček F
    Biomed Mater; 2016 Jan; 11(1):015002. PubMed ID: 26752658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of porous poly(L-lactide) scaffolds using solid-liquid phase separation.
    Goh YQ; Ooi CP
    J Mater Sci Mater Med; 2008 Jun; 19(6):2445-52. PubMed ID: 18219558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering.
    Safinia L; Mantalaris A; Bismarck A
    Langmuir; 2006 Mar; 22(7):3235-42. PubMed ID: 16548583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications.
    Day RM; Boccaccini AR; Maquet V; Shurey S; Forbes A; Gabe SM; Jérôme R
    J Mater Sci Mater Med; 2004 Jun; 15(6):729-34. PubMed ID: 15346742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance Polymer Foams by Thermally Induced Phase Separation.
    Rusakov D; Menner A; Bismarck A
    Macromol Rapid Commun; 2020 Jun; 41(11):e2000110. PubMed ID: 32363705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress on Biodegradable Tissue Engineering Scaffolds Prepared by Thermally-Induced Phase Separation (TIPS).
    Zeinali R; Del Valle LJ; Torras J; Puiggalí J
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33800709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.
    Nam YS; Park TG
    Biomaterials; 1999 Oct; 20(19):1783-90. PubMed ID: 10509188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing.
    Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM
    Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network.
    Ma PX; Choi JW
    Tissue Eng; 2001 Feb; 7(1):23-33. PubMed ID: 11224921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(L-lactic acid) foams with cell seeding and controlled-release capacity.
    Lo H; Kadiyala S; Guggino SE; Leong KW
    J Biomed Mater Res; 1996 Apr; 30(4):475-84. PubMed ID: 8847355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of macroporous biodegradable poly(L-lactide-co-epsilon-caprolactone) foams and characterization by mercury intrusion porosimetry, image analysis, and impedance spectroscopy.
    Maquet V; Blacher S; Pirard R; Pirard JP; Vyakarnam MN; Jérôme R
    J Biomed Mater Res A; 2003 Aug; 66(2):199-213. PubMed ID: 12888989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel porous scaffolds of poly(lactic acid) produced by phase-separation using room temperature ionic liquid and the assessments of biocompatibility.
    Lee HY; Jin GZ; Shin US; Kim JH; Kim HW
    J Mater Sci Mater Med; 2012 May; 23(5):1271-9. PubMed ID: 22382734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of tissue engineering scaffolds through solid-state foaming of immiscible polymer blends.
    Zhou C; Ma L; Li W; Yao D
    Biofabrication; 2011 Dec; 3(4):045003. PubMed ID: 21904025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering.
    Akbarzadeh R; Yousefi AM
    J Biomed Mater Res B Appl Biomater; 2014 Aug; 102(6):1304-15. PubMed ID: 24425207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of highly porous scaffolds for tissue engineering based on star-shaped functional poly(ε-caprolactone).
    Theiler S; Mela P; Diamantouros SE; Jockenhoevel S; Keul H; Möller M
    Biotechnol Bioeng; 2011 Mar; 108(3):694-703. PubMed ID: 21246513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.