These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25275458)

  • 1. De novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana.
    Rao G; Sui J; Zeng Y; He C; Duan A; Zhang J
    PLoS One; 2014; 9(10):e109122. PubMed ID: 25275458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress.
    Zhou J; Liu M; Jiang J; Qiao G; Lin S; Li H; Xie L; Zhuo R
    Mol Biol Rep; 2012 Sep; 39(9):8645-54. PubMed ID: 22718503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Transcriptomic Approaches Exploring Contamination Stress Tolerance in Salix sp. Reveal the Importance for a Metaorganismal de Novo Assembly Approach for Nonmodel Plants.
    Brereton NJ; Gonzalez E; Marleau J; Nissim WG; Labrecque M; Joly S; Pitre FE
    Plant Physiol; 2016 May; 171(1):3-24. PubMed ID: 27002060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and expression analysis of salt-responsive genes using a comparative microarray approach in Salix matsudana.
    Liu M; Qiao G; Jiang J; Han X; Sang J; Zhuo R
    Mol Biol Rep; 2014 Oct; 41(10):6555-68. PubMed ID: 24993115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncovering candidate genes responsive to salt stress in Salix matsudana (Koidz) by transcriptomic analysis.
    Chen Y; Jiang Y; Chen Y; Feng W; Liu G; Yu C; Lian B; Zhong F; Zhang J
    PLoS One; 2020; 15(8):e0236129. PubMed ID: 32760076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of AFLP and RAPD markers linked to a locus associated with twisted growth in corkscrew willow (Salix matsudana 'Tortuosa').
    Lin J; Gunter LE; Harding SA; Kopp RF; McCord RP; Tsai CJ; Tuskan GA; Smart LB
    Tree Physiol; 2007 Nov; 27(11):1575-83. PubMed ID: 17669747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide characterization and identification of Trihelix transcription factors and expression profiling in response to abiotic stresses in Chinese Willow (
    Yang J; Tang Z; Yang W; Huang Q; Wang Y; Huang M; Wei H; Liu G; Lian B; Chen Y; Zhang J
    Front Plant Sci; 2023; 14():1125519. PubMed ID: 36938039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow (
    Zhang J; Shi SZ; Jiang Y; Zhong F; Liu G; Yu C; Lian B; Chen Y
    PeerJ; 2021; 9():e11076. PubMed ID: 33954030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Salix matsudana under different abiotic stresses.
    Zhang Y; Han X; Chen S; Zheng L; He X; Liu M; Qiao G; Wang Y; Zhuo R
    Sci Rep; 2017 Jan; 7():40290. PubMed ID: 28120870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Transcriptome analysis of Salix matsudana under cadmium stress].
    Cao J; Li S; He D
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1365-1377. PubMed ID: 32748594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome sequencing and phylogenetic analysis of allotetraploid Salix matsudana Koidz.
    Zhang J; Yuan H; Li Y; Chen Y; Liu G; Ye M; Yu C; Lian B; Zhong F; Jiang Y; Xu J
    Hortic Res; 2020 Dec; 7(1):201. PubMed ID: 33328474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complete chloroplast genome of
    Yang T; Zhang Q; Yang C; Qiu J
    Mitochondrial DNA B Resour; 2022; 7(10):1794-1796. PubMed ID: 36278124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5.
    Chen Y; Dai Y; Li Y; Yang J; Jiang Y; Liu G; Yu C; Zhong F; Lian B; Zhang J
    BMC Plant Biol; 2022 Mar; 22(1):102. PubMed ID: 35255820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transporters and ascorbate-glutathione metabolism for differential cadmium accumulation and tolerance in two contrasting willow genotypes.
    Han X; Zhang Y; Yu M; Zhang J; Xu D; Lu Z; Qiao G; Qiu W; Zhuo R
    Tree Physiol; 2020 Jul; 40(8):1126-1142. PubMed ID: 32175583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular insights into lignin biosynthesis on cadmium tolerance: Morphology, transcriptome and proteome profiling in Salix matsudana.
    Yu M; Zhuo R; Lu Z; Li S; Chen J; Wang Y; Li J; Han X
    J Hazard Mater; 2023 Jan; 441():129909. PubMed ID: 36099736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional and Hormonal Regulation of Weeping Trait in Salix matsudana.
    Liu J; Zeng Y; Yan P; He C; Zhang J
    Genes (Basel); 2017 Nov; 8(12):. PubMed ID: 29189719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of SmEXPA13 expression by SmMYB1R1-L enhances salt tolerance in Salix matsudana Koidz.
    Zhang J; Wang L; Wu D; Zhao H; Gong L; Xu J
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132292. PubMed ID: 38750858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular responses to salinity stress in
    Liu G; Wang Y; Lian B; Ma Z; Xiang X; Wu J; Luo C; Ma D; Chen Y; Yu C; Zhong F; Wei H; Zhang J
    Front Plant Sci; 2023; 14():1122197. PubMed ID: 36778681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of early transcriptional responses to cadmium in the root and leaf of Cd-resistant Salix matsudana Koidz.
    Yang J; Li K; Zheng W; Zhang H; Cao X; Lan Y; Yang C; Li C
    BMC Genomics; 2015 Sep; 16(1):705. PubMed ID: 26381125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic architecture of growth traits in
    Zhang J; Yuan H; Yang Q; Li M; Wang Y; Li Y; Ma X; Tan F; Wu R
    Hortic Res; 2017; 4():17024. PubMed ID: 28638623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.