BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2527561)

  • 1. Steady-state catecholamine distribution in chromaffin granule preparations: a test of the pump-leak hypothesis of general anesthesia.
    Akeson MA; Deamer DW
    Biochemistry; 1989 Jun; 28(12):5120-7. PubMed ID: 2527561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of H+ gradients to catecholamine transport in chromaffin granules.
    Johnson RG; Carty SE; Scarpa A
    Ann N Y Acad Sci; 1985; 456():254-67. PubMed ID: 2868684
    [No Abstract]   [Full Text] [Related]  

  • 3. Protonmotive force and catecholamine transport in isolated chromaffin granules.
    Johnson RG; Scarpa A
    J Biol Chem; 1979 May; 254(10):3750-60. PubMed ID: 438157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H+-ATPase and catecholamine transport in chromaffin granules.
    Beers MF; Carty SE; Johnson RG; Scarpa A
    Ann N Y Acad Sci; 1982; 402():116-33. PubMed ID: 6220634
    [No Abstract]   [Full Text] [Related]  

  • 5. Stoichiometry of catecholamine/proton exchange across the chromaffin-granule membrane.
    Phillips JH; Apps DK
    Biochem J; 1980 Oct; 192(1):273-8. PubMed ID: 6272699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubilization and reconstitution of the catecholamine transporter from bovine chromaffin granules.
    Maron R; Fishkes H; Kanner BI; Schuldiner S
    Biochemistry; 1979 Oct; 18(22):4781-5. PubMed ID: 41569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine triphosphate in the bovine chromaffin granule.
    Phillips JH; Morton AG
    J Physiol (Paris); 1978; 74(5):503-8. PubMed ID: 34031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton pumps and chemiosmotic coupling as a generalized mechanism for neurotransmitter and hormone transport.
    Johnson RG
    Ann N Y Acad Sci; 1987; 493():162-77. PubMed ID: 2884918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy utilization in the uptake of catecholamines by synaptic vesicles and adrenal chromaffin granules.
    Toll L; Gundersen CB; Howard BD
    Brain Res; 1977 Nov; 136(1):59-66. PubMed ID: 589446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. deltapH and catecholamine distribution in isolated chromaffin granules.
    Johnson RG; Carlson NJ; Scarpa A
    J Biol Chem; 1978 Mar; 253(5):1512-21. PubMed ID: 24053
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential.
    Holz RW
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):5190-4. PubMed ID: 33385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The acylphosphate present in chromaffin granule membrane preparations is not associated with the proton-pump.
    Scherman D; Soumarmon A; Henry JP
    Biochimie; 1986 Dec; 68(12):1303-9. PubMed ID: 2878689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of prenylamine and organic nitrates on the bioenergetics of bovine catecholamine storage vesicles.
    Grønberg M; Terland O; Husebye ES; Flatmark T
    Biochem Pharmacol; 1990 Jul; 40(2):351-5. PubMed ID: 2142883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does the carrier of chromaffin granules transport the protonated or the uncharged species of catecholamines?
    Kobold G; Langer R; Burger A
    Naunyn Schmiedebergs Arch Pharmacol; 1985 Nov; 331(2-3):209-19. PubMed ID: 3003589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of catecholamine transport into chromaffin granule ghosts isolated from bovine adrenal glands by phenytoin.
    Deupree JD; Downs DA; Laposky JE; Hitchcock JJ
    J Pharmacol Exp Ther; 1984 Jul; 230(1):171-4. PubMed ID: 6146705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nicardipine and other Ca2+-antagonists on catecholamine transport into chromaffin granule membrane vesicles.
    Tachikawa E; Takahashi S; Shimizu C; Ohtsubo N; Kashimoto T; Takahashi E
    Res Commun Chem Pathol Pharmacol; 1984 Aug; 45(2):305-8. PubMed ID: 6484315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on Mg2+-dependent ATPase in bovine adrenal chromaffin granules. With special reference to the effect of inhibitors and energy coupling.
    Grønberg M; Flatmark T
    Eur J Biochem; 1987 Apr; 164(1):1-8. PubMed ID: 2881784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of calcium channel blockers on the H(+)-ATPase and bioenergetics of catecholamine storage vesicles.
    Terland O; Grønberg M; Flatmark T
    Eur J Pharmacol; 1991 May; 207(1):37-41. PubMed ID: 1833213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and quantitative measurements of catecholamine transport in chromaffin ghosts using a glassy carbon electrode.
    Hayflick S; Johnson RG; Carty SE; Scarpa A
    Anal Biochem; 1982 Oct; 126(1):58-66. PubMed ID: 7181117
    [No Abstract]   [Full Text] [Related]  

  • 20. Uptake of magnesium by chromaffin granules in vitro: role of the proton electrochemical gradient.
    Fiedler J; Daniels AJ
    J Neurochem; 1984 May; 42(5):1291-7. PubMed ID: 6707633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.