These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 25275646)
1. Synergism and antagonism between Bacillus thuringiensis Vip3A and Cry1 proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. Lemes AR; Davolos CC; Legori PC; Fernandes OA; Ferré J; Lemos MV; Desiderio JA PLoS One; 2014; 9(9):e107196. PubMed ID: 25275646 [TBL] [Abstract][Full Text] [Related]
2. Bacillus thuringiensis Cry1Da_7 and Cry1B.868 Protein Interactions with Novel Receptors Allow Control of Resistant Fall Armyworms, Spodoptera frugiperda (J.E. Smith). Wang Y; Wang J; Fu X; Nageotte JR; Silverman J; Bretsnyder EC; Chen D; Rydel TJ; Bean GJ; Li KS; Kraft E; Gowda A; Nance A; Moore RG; Pleau MJ; Milligan JS; Anderson HM; Asiimwe P; Evans A; Moar WJ; Martinelli S; Head GP; Haas JA; Baum JA; Yang F; Kerns DL; Jerga A Appl Environ Microbiol; 2019 Aug; 85(16):. PubMed ID: 31175187 [TBL] [Abstract][Full Text] [Related]
3. Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Sena JA; Hernández-Rodríguez CS; Ferré J Appl Environ Microbiol; 2009 Apr; 75(7):2236-7. PubMed ID: 19181834 [TBL] [Abstract][Full Text] [Related]
4. Toxicity and characterization of cotton expressing Bacillus thuringiensis Cry1Ac and Cry2Ab2 proteins for control of lepidopteran pests. Sivasupramaniam S; Moar WJ; Ruschke LG; Osborn JA; Jiang C; Sebaugh JL; Brown GR; Shappley ZW; Oppenhuizen ME; Mullins JW; Greenplate JT J Econ Entomol; 2008 Apr; 101(2):546-54. PubMed ID: 18459423 [TBL] [Abstract][Full Text] [Related]
5. Competition of Bacillus thuringiensis Cry1 toxins for midgut binding sites: a basis for the development and management of transgenic tropical maize resistant to several stemborers. Rang C; Bergvingson D; Bohorova N; Hoisington D; Frutos R Curr Microbiol; 2004 Jul; 49(1):22-7. PubMed ID: 15297925 [TBL] [Abstract][Full Text] [Related]
6. Toxicity of Cry- and Vip3Aa-Class Proteins and Their Interactions against Liu X; Liu S; Bai S; He K; Zhang Y; Dong H; Zhang T; Wang Z Toxins (Basel); 2024 Apr; 16(4):. PubMed ID: 38668618 [TBL] [Abstract][Full Text] [Related]
7. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Jurat-Fuentes JL; Gould FL; Adang MJ Appl Environ Microbiol; 2003 Oct; 69(10):5898-906. PubMed ID: 14532042 [TBL] [Abstract][Full Text] [Related]
8. Susceptibility of Grapholita molesta (Busck, 1916) to formulations of Bacillus thuringiensis, individual toxins and their mixtures. Ricietto AP; Gomis-Cebolla J; Vilas-Bôas GT; Ferré J J Invertebr Pathol; 2016 Nov; 141():1-5. PubMed ID: 27686262 [TBL] [Abstract][Full Text] [Related]
9. Insecticidal activity of Bacillus thuringiensis Cry1Bh1 against Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae) and other lepidopteran pests. Lira J; Beringer J; Burton S; Griffin S; Sheets J; Tan SY; Woosley A; Worden S; Narva KE Appl Environ Microbiol; 2013 Dec; 79(24):7590-7. PubMed ID: 24077715 [TBL] [Abstract][Full Text] [Related]
10. Structural and Functional Insights into the C-terminal Fragment of Insecticidal Vip3A Toxin of Jiang K; Zhang Y; Chen Z; Wu D; Cai J; Gao X Toxins (Basel); 2020 Jul; 12(7):. PubMed ID: 32635593 [TBL] [Abstract][Full Text] [Related]
11. Synergism of the Bacillus thuringiensis Cry1, Cry2, and Vip3 Proteins in Spodoptera frugiperda Control. Soares Figueiredo C; Nunes Lemes AR; Sebastião I; Desidério JA Appl Biochem Biotechnol; 2019 Jul; 188(3):798-809. PubMed ID: 30706415 [TBL] [Abstract][Full Text] [Related]
12. Cross-resistance responses of CrylAc-selected Heliothis virescens (Lepidoptera: Noctuidae) to the Bacillus thuringiensis protein vip3A. Jackson RE; Marcus MA; Gould F; Bradley JR; Van Duyn JW J Econ Entomol; 2007 Feb; 100(1):180-6. PubMed ID: 17370826 [TBL] [Abstract][Full Text] [Related]
13. Screening and characterization of Bacillus thuringiensis isolates for high production of Vip3A and Cry proteins and high thermostability to control Spodoptera spp. Hemthanon T; Promdonkoy B; Boonserm P J Invertebr Pathol; 2023 Nov; 201():108020. PubMed ID: 37956858 [TBL] [Abstract][Full Text] [Related]
14. Role of Bacillus thuringiensis Cry1 delta endotoxin binding in determining potency during lepidopteran larval development. Gilliland A; Chambers CE; Bone EJ; Ellar DJ Appl Environ Microbiol; 2002 Apr; 68(4):1509-15. PubMed ID: 11916662 [TBL] [Abstract][Full Text] [Related]
15. Role of Bacillus thuringiensis Cry1A toxins domains in the binding to the ABCC2 receptor from Spodoptera exigua. Martínez-Solís M; Pinos D; Endo H; Portugal L; Sato R; Ferré J; Herrero S; Hernández-Martínez P Insect Biochem Mol Biol; 2018 Oct; 101():47-56. PubMed ID: 30077769 [TBL] [Abstract][Full Text] [Related]
16. Toxicity of Cry1-Class, Cry2Aa, and Vip3Aa19 Bt proteins and their interactions against yellow peach Moth, Conogethes punctiferalis (Guenée) (Lepidoptera: Crambidae). Shwe SM; Wang Y; Gao Z; Li X; Liu S; Bai S; Zhang T; He K; Wang Z J Invertebr Pathol; 2021 Jan; 178():107507. PubMed ID: 33249063 [TBL] [Abstract][Full Text] [Related]
17. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. Jurat-Fuentes JL; Karumbaiah L; Jakka SR; Ning C; Liu C; Wu K; Jackson J; Gould F; Blanco C; Portilla M; Perera O; Adang M PLoS One; 2011 Mar; 6(3):e17606. PubMed ID: 21390253 [TBL] [Abstract][Full Text] [Related]
18. A soybean trypsin inhibitor reduces the resistance to transgenic maize in a population of Spodoptera frugiperda (Lepidoptera: Noctuidae). Fonseca SS; Santos ALZ; Pinto CPG; Marques L; Santos AC; Bing J; Nowatzki T; Sethi A; Rossi GD J Econ Entomol; 2023 Dec; 116(6):2146-2153. PubMed ID: 37816687 [TBL] [Abstract][Full Text] [Related]
19. Bacillus thuringiensis chimeric proteins Cry1A.2 and Cry1B.2 to control soybean lepidopteran pests: New domain combinations enhance insecticidal spectrum of activity and novel receptor contributions. Chen D; Moar WJ; Jerga A; Gowda A; Milligan JS; Bretsynder EC; Rydel TJ; Baum JA; Semeao A; Fu X; Guzov V; Gabbert K; Head GP; Haas JA PLoS One; 2021; 16(6):e0249150. PubMed ID: 34138865 [TBL] [Abstract][Full Text] [Related]
20. [Identification and cloning of vip3A genes from isolates of Bacillus thuringiensis and their bioactivity analysis]. Shen J; Hou M; Guo W Wei Sheng Wu Xue Bao; 2009 Jan; 49(1):110-6. PubMed ID: 19388273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]