These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 25275795)
1. Interaction between metal cation and unnatural peptide backbone mediated by polarized water molecules: study of infrared spectroscopy and computations. Shi J; Wang J J Phys Chem B; 2014 Oct; 118(43):12336-47. PubMed ID: 25275795 [TBL] [Abstract][Full Text] [Related]
2. Uncovering the Sensitivity of Amide-II Vibration to Peptide-Ion Interactions. Zhao J; Wang J J Phys Chem B; 2016 Sep; 120(36):9590-8. PubMed ID: 27537202 [TBL] [Abstract][Full Text] [Related]
3. Coordination of trivalent metal cations to peptides: results from IRMPD spectroscopy and theory. Prell JS; Flick TG; Oomens J; Berden G; Williams ER J Phys Chem A; 2010 Jan; 114(2):854-60. PubMed ID: 19950916 [TBL] [Abstract][Full Text] [Related]
4. Structural dynamics of N-ethylpropionamide clusters examined by nonlinear infrared spectroscopy. Wang J; Yang F; Shi J; Zhao J J Chem Phys; 2015 Nov; 143(18):185102. PubMed ID: 26567687 [TBL] [Abstract][Full Text] [Related]
5. Cations bind only weakly to amides in aqueous solutions. Okur HI; Kherb J; Cremer PS J Am Chem Soc; 2013 Apr; 135(13):5062-7. PubMed ID: 23517474 [TBL] [Abstract][Full Text] [Related]
6. Direct Anionic Effect on Water Structure and Indirect Anionic Effect on Peptide Backbone Hydration State Revealed by Thin-Layer Infrared Spectroscopy. Zhao J; Wang J J Phys Chem B; 2018 Jan; 122(1):68-76. PubMed ID: 29232512 [TBL] [Abstract][Full Text] [Related]
7. Amide-I characteristics of helical β-peptides by linear infrared measurement and computations. Zhao J; Shi J; Wang J J Phys Chem B; 2014 Jan; 118(1):94-106. PubMed ID: 24328259 [TBL] [Abstract][Full Text] [Related]
8. Conformation and Metal Cation Binding of Zwitterionic Alanine Tripeptide in Saline Solutions by Infrared Vibrational Spectroscopy and Molecular Dynamics Simulations. Zhao J; Dong T; Yu P; Wang J J Phys Chem B; 2022 Jan; 126(1):161-173. PubMed ID: 34968072 [TBL] [Abstract][Full Text] [Related]
9. Specific and non-specific interactions between metal cations and zwitterionic alanine tripeptide in saline solutions reported by the symmetric carboxylate stretching and amide-II vibrations. Zhao J; Wang J Phys Chem Chem Phys; 2020 Nov; 22(43):25042-25053. PubMed ID: 33112337 [TBL] [Abstract][Full Text] [Related]
10. Selectively Probing the Structures and Dynamics of β-Peptide Aggregates Using the Amide-A Vibrational Marker. Wang J; Yang F; Zhao J J Phys Chem B; 2015 Dec; 119(50):15451-9. PubMed ID: 26601794 [TBL] [Abstract][Full Text] [Related]
11. IRMPD spectroscopic study of microsolvated [Na(GlyAla)]+ and [Ca(GlyAla-H)]+ and the blue shifting of the hydrogen-bonded amide stretch with each water addition. Moghaddam MB; Fridgen TD J Phys Chem B; 2013 May; 117(20):6157-64. PubMed ID: 23627299 [TBL] [Abstract][Full Text] [Related]
12. Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent. Turner DR; Kubelka J J Phys Chem B; 2007 Feb; 111(7):1834-45. PubMed ID: 17256894 [TBL] [Abstract][Full Text] [Related]
13. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations. Cai K; Zheng X; Du F Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():150-157. PubMed ID: 28448953 [TBL] [Abstract][Full Text] [Related]
14. The solvent-dependent shift of the amide I band of a fully solvated peptide as a local probe for the solvent composition in the peptide/solvent interface. Paschek D; Pühse M; Perez-Goicochea A; Gnanakaran S; García AE; Winter R; Geiger A Chemphyschem; 2008 Dec; 9(18):2742-50. PubMed ID: 19035605 [TBL] [Abstract][Full Text] [Related]
15. Simulations of the temperature dependence of amide I vibration. Kaminský J; Bouř P; Kubelka J J Phys Chem A; 2011 Jan; 115(1):30-4. PubMed ID: 21141980 [TBL] [Abstract][Full Text] [Related]
16. On the structure of water and chloride ion interactions with a peptide backbone in solution. Busch S; Pardo LC; O'Dell WB; Bruce CD; Lorenz CD; McLain SE Phys Chem Chem Phys; 2013 Dec; 15(48):21023-33. PubMed ID: 24217310 [TBL] [Abstract][Full Text] [Related]
17. Specificity in cationic interaction with poly(N-isopropylacrylamide). Du H; Wickramasinghe SR; Qian X J Phys Chem B; 2013 May; 117(17):5090-101. PubMed ID: 23590832 [TBL] [Abstract][Full Text] [Related]
18. Solvent effects on IR and VCD spectra of helical peptides: DFT-based static spectral simulations with explicit water. Kubelka J; Huang R; Keiderling TA J Phys Chem B; 2005 Apr; 109(16):8231-43. PubMed ID: 16851962 [TBL] [Abstract][Full Text] [Related]
19. Hofmeister anionic effects on hydration electric fields around water and peptide. Kim H; Lee H; Lee G; Kim H; Cho M J Chem Phys; 2012 Mar; 136(12):124501. PubMed ID: 22462868 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation effect on the GSSS peptide conformation in water: infrared, vibrational circular dichroism, and circular dichroism experiments and comparisons with molecular dynamics simulations. Lee KK; Joo C; Yang S; Han H; Cho M J Chem Phys; 2007 Jun; 126(23):235102. PubMed ID: 17600445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]