BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25275795)

  • 1. Interaction between metal cation and unnatural peptide backbone mediated by polarized water molecules: study of infrared spectroscopy and computations.
    Shi J; Wang J
    J Phys Chem B; 2014 Oct; 118(43):12336-47. PubMed ID: 25275795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering the Sensitivity of Amide-II Vibration to Peptide-Ion Interactions.
    Zhao J; Wang J
    J Phys Chem B; 2016 Sep; 120(36):9590-8. PubMed ID: 27537202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination of trivalent metal cations to peptides: results from IRMPD spectroscopy and theory.
    Prell JS; Flick TG; Oomens J; Berden G; Williams ER
    J Phys Chem A; 2010 Jan; 114(2):854-60. PubMed ID: 19950916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural dynamics of N-ethylpropionamide clusters examined by nonlinear infrared spectroscopy.
    Wang J; Yang F; Shi J; Zhao J
    J Chem Phys; 2015 Nov; 143(18):185102. PubMed ID: 26567687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cations bind only weakly to amides in aqueous solutions.
    Okur HI; Kherb J; Cremer PS
    J Am Chem Soc; 2013 Apr; 135(13):5062-7. PubMed ID: 23517474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Anionic Effect on Water Structure and Indirect Anionic Effect on Peptide Backbone Hydration State Revealed by Thin-Layer Infrared Spectroscopy.
    Zhao J; Wang J
    J Phys Chem B; 2018 Jan; 122(1):68-76. PubMed ID: 29232512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amide-I characteristics of helical β-peptides by linear infrared measurement and computations.
    Zhao J; Shi J; Wang J
    J Phys Chem B; 2014 Jan; 118(1):94-106. PubMed ID: 24328259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformation and Metal Cation Binding of Zwitterionic Alanine Tripeptide in Saline Solutions by Infrared Vibrational Spectroscopy and Molecular Dynamics Simulations.
    Zhao J; Dong T; Yu P; Wang J
    J Phys Chem B; 2022 Jan; 126(1):161-173. PubMed ID: 34968072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific and non-specific interactions between metal cations and zwitterionic alanine tripeptide in saline solutions reported by the symmetric carboxylate stretching and amide-II vibrations.
    Zhao J; Wang J
    Phys Chem Chem Phys; 2020 Nov; 22(43):25042-25053. PubMed ID: 33112337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectively Probing the Structures and Dynamics of β-Peptide Aggregates Using the Amide-A Vibrational Marker.
    Wang J; Yang F; Zhao J
    J Phys Chem B; 2015 Dec; 119(50):15451-9. PubMed ID: 26601794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IRMPD spectroscopic study of microsolvated [Na(GlyAla)]+ and [Ca(GlyAla-H)]+ and the blue shifting of the hydrogen-bonded amide stretch with each water addition.
    Moghaddam MB; Fridgen TD
    J Phys Chem B; 2013 May; 117(20):6157-64. PubMed ID: 23627299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent.
    Turner DR; Kubelka J
    J Phys Chem B; 2007 Feb; 111(7):1834-45. PubMed ID: 17256894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations.
    Cai K; Zheng X; Du F
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():150-157. PubMed ID: 28448953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The solvent-dependent shift of the amide I band of a fully solvated peptide as a local probe for the solvent composition in the peptide/solvent interface.
    Paschek D; Pühse M; Perez-Goicochea A; Gnanakaran S; García AE; Winter R; Geiger A
    Chemphyschem; 2008 Dec; 9(18):2742-50. PubMed ID: 19035605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulations of the temperature dependence of amide I vibration.
    Kaminský J; Bouř P; Kubelka J
    J Phys Chem A; 2011 Jan; 115(1):30-4. PubMed ID: 21141980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the structure of water and chloride ion interactions with a peptide backbone in solution.
    Busch S; Pardo LC; O'Dell WB; Bruce CD; Lorenz CD; McLain SE
    Phys Chem Chem Phys; 2013 Dec; 15(48):21023-33. PubMed ID: 24217310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity in cationic interaction with poly(N-isopropylacrylamide).
    Du H; Wickramasinghe SR; Qian X
    J Phys Chem B; 2013 May; 117(17):5090-101. PubMed ID: 23590832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent effects on IR and VCD spectra of helical peptides: DFT-based static spectral simulations with explicit water.
    Kubelka J; Huang R; Keiderling TA
    J Phys Chem B; 2005 Apr; 109(16):8231-43. PubMed ID: 16851962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hofmeister anionic effects on hydration electric fields around water and peptide.
    Kim H; Lee H; Lee G; Kim H; Cho M
    J Chem Phys; 2012 Mar; 136(12):124501. PubMed ID: 22462868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation effect on the GSSS peptide conformation in water: infrared, vibrational circular dichroism, and circular dichroism experiments and comparisons with molecular dynamics simulations.
    Lee KK; Joo C; Yang S; Han H; Cho M
    J Chem Phys; 2007 Jun; 126(23):235102. PubMed ID: 17600445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.