BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25275944)

  • 1. Precursor-directed biosynthesis of 5-hydroxytryptophan using metabolically engineered E. coli.
    Sun X; Lin Y; Yuan Q; Yan Y
    ACS Synth Biol; 2015 May; 4(5):554-8. PubMed ID: 25275944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Escherichia coli for efficient production of L-5-hydroxytryptophan from glucose.
    Zhang Z; Yu Z; Wang J; Yu Y; Li L; Sun P; Fan X; Xu Q
    Microb Cell Fact; 2022 Sep; 21(1):198. PubMed ID: 36153615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic pathway engineering for high-level production of 5-hydroxytryptophan in Escherichia coli.
    Wang H; Liu W; Shi F; Huang L; Lian J; Qu L; Cai J; Xu Z
    Metab Eng; 2018 Jul; 48():279-287. PubMed ID: 29933064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan.
    Lin Y; Sun X; Yuan Q; Yan Y
    ACS Synth Biol; 2014 Jul; 3(7):497-505. PubMed ID: 24936877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced production of 5-hydroxytryptophan through the regulation of L-tryptophan biosynthetic pathway.
    Xu D; Fang M; Wang H; Huang L; Xu Q; Xu Z
    Appl Microbiol Biotechnol; 2020 Mar; 104(6):2481-2488. PubMed ID: 32006050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol.
    Pereira B; Zhang H; De Mey M; Lim CG; Li ZJ; Stephanopoulos G
    Biotechnol Bioeng; 2016 Feb; 113(2):376-83. PubMed ID: 26221864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an artificial biosynthetic pathway for biosynthesis of (S)-reticuline based on HpaBC in engineered Escherichia coli.
    Guo D; Kong S; Sun Y; Li X; Pan H
    Biotechnol Bioeng; 2021 Dec; 118(12):4635-4642. PubMed ID: 34427913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of Novel Biosynthetic Pathways for the Production of Salicyl Alcohol and Gentisyl Alcohol in Engineered Escherichia coli.
    Shen X; Wang J; Gall BK; Ferreira EM; Yuan Q; Yan Y
    ACS Synth Biol; 2018 Apr; 7(4):1012-1017. PubMed ID: 29570271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain.
    Huang Q; Lin Y; Yan Y
    Biotechnol Bioeng; 2013 Dec; 110(12):3188-96. PubMed ID: 23801069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration.
    Chen L; Zeng AP
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):559-568. PubMed ID: 27599980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extending the shikimate pathway for microbial production of maleate from glycerol in engineered Escherichia coli.
    Sheng H; Jing Y; An N; Shen X; Sun X; Yan Y; Wang J; Yuan Q
    Biotechnol Bioeng; 2021 May; 118(5):1840-1850. PubMed ID: 33512000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
    Wang X; Li Z; Policarpio L; Koffas MAG; Zhang H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4849-4861. PubMed ID: 32285175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances and prospects in metabolic engineering of Escherichia coli for L-tryptophan production.
    Liu S; Xu JZ; Zhang WG
    World J Microbiol Biotechnol; 2022 Jan; 38(2):22. PubMed ID: 34989926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous biosynthesis of costunolide in Escherichia coli and yield improvement.
    Yin H; Zhuang YB; Li EE; Bi HP; Zhou W; Liu T
    Biotechnol Lett; 2015 Jun; 37(6):1249-55. PubMed ID: 25700819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical.
    Valdehuesa KN; Liu H; Nisola GM; Chung WJ; Lee SH; Park SJ
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3309-21. PubMed ID: 23494623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Artificial Biosynthetic Pathway for 2-Amino-1,3-Propanediol Production Using Metabolically Engineered Escherichia coli.
    Luo Y; Zhao Q; Liu Q; Feng Y
    ACS Synth Biol; 2019 Mar; 8(3):548-556. PubMed ID: 30781944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and construction of an artificial pathway for biosynthesis of acetaminophen in Escherichia coli.
    Shen X; Chen X; Wang J; Sun X; Dong S; Li Y; Yan Y; Wang J; Yuan Q
    Metab Eng; 2021 Nov; 68():26-33. PubMed ID: 34487838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.
    Zhang H; Stephanopoulos G
    Biotechnol J; 2016 Jul; 11(7):981-7. PubMed ID: 27168529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering.
    Lv X; Gu J; Wang F; Xie W; Liu M; Ye L; Yu H
    Biotechnol Bioeng; 2016 Dec; 113(12):2661-2669. PubMed ID: 27316379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of metabolic engineering for the biotechnological production of L-valine.
    Oldiges M; Eikmanns BJ; Blombach B
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5859-70. PubMed ID: 24816722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.