These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25275954)

  • 1. Lattice Boltzmann modeling of droplet condensation on superhydrophobic nanoarrays.
    Zhang Q; Sun D; Zhang Y; Zhu M
    Langmuir; 2014 Oct; 30(42):12559-69. PubMed ID: 25275954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions.
    Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the Effects of Nanopatterned Surfaces on Wetting States of Droplets.
    Xiao K; Zhao Y; Ouyang G; Li X
    Nanoscale Res Lett; 2017 Dec; 12(1):309. PubMed ID: 28449550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing.
    Seo D; Lee C; Nam Y
    Langmuir; 2014 Dec; 30(51):15468-76. PubMed ID: 25466626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Initial Nucleation to Cassie-Baxter State of Condensed Droplets on Nanotextured Superhydrophobic Surfaces.
    Lv C; Zhang X; Niu F; He F; Hao P
    Sci Rep; 2017 Feb; 7():42752. PubMed ID: 28202939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role and significance of wetting pressures during droplet impact on structured superhydrophobic surfaces.
    Murugadoss K; Dhar P; Das SK
    Eur Phys J E Soft Matter; 2017 Jan; 40(1):1. PubMed ID: 28083793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Condensation of droplets on nanopillared hydrophobic substrates.
    Guo Q; Liu Y; Jiang G; Zhang X
    Soft Matter; 2014 Feb; 10(8):1182-8. PubMed ID: 24652083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of condensation on nanostructured surfaces and associated thermal hydraulics using a thermal lattice Boltzmann method.
    Mukherjee A; Basu DN; Mondal PK; Chen L
    Phys Rev E; 2022 Apr; 105(4-2):045308. PubMed ID: 35590537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting intermediate wetting on superhydrophobic surfaces for efficient icing prevention.
    Keshavarzi S; Momen G; Eberle P; Azimi Yancheshme A; Alvarez NJ; Jafari R
    J Colloid Interface Sci; 2024 Sep; 670():550-562. PubMed ID: 38776690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of condensation on structured surfaces.
    Fu X; Yao Z; Hao P
    Langmuir; 2014 Nov; 30(46):14048-55. PubMed ID: 25347594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating Nonwetting of Re-Entrant Surfaces with Impinging Droplets.
    Zhang B; Zhang X
    Langmuir; 2015 Sep; 31(34):9448-57. PubMed ID: 26270084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.
    Aili A; Li H; Alhosani MH; Zhang T
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of droplet wetting mode transitions on grooved surfaces: forward flux sampling.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2014 Dec; 30(51):15442-50. PubMed ID: 25470510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freezing-Melting Mediated Dewetting Transition for Droplets on Superhydrophobic Surfaces with Condensation.
    Cui J; Wang T; Che Z
    Langmuir; 2024 Jul; 40(28):14685-14696. PubMed ID: 38970799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces.
    Ölçeroğlu E; Hsieh CY; Rahman MM; Lau KK; McCarthy M
    Langmuir; 2014 Jul; 30(25):7556-66. PubMed ID: 24882117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous nucleation of argon vapor on the nanostructure surface with molecular dynamics simulation.
    Wang Q; Xie H; Liu J; Liu C
    J Mol Graph Model; 2020 Nov; 100():107674. PubMed ID: 32750651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.