These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25275956)

  • 1. Correlation between nanomechanics and polymorphic conformations in amyloid fibrils.
    Usov I; Mezzenga R
    ACS Nano; 2014 Nov; 8(11):11035-41. PubMed ID: 25275956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymorphism complexity and handedness inversion in serum albumin amyloid fibrils.
    Usov I; Adamcik J; Mezzenga R
    ACS Nano; 2013 Dec; 7(12):10465-74. PubMed ID: 24171389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology and mechanical properties of multi-stranded amyloid fibrils probed by atomistic and coarse-grained simulations.
    Yoon G; Lee M; Kim K; Kim JI; Chang HJ; Baek I; Eom K; Na S
    Phys Biol; 2015 Dec; 12(6):066021. PubMed ID: 26717468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between the hierarchical structures and nanomechanical properties of amyloid fibrils.
    Lee G; Lee W; Baik S; Kim YH; Eom K; Kwon T
    Nanotechnology; 2018 Jul; 29(29):295701. PubMed ID: 29644980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The circularization of amyloid fibrils formed by apolipoprotein C-II.
    Hatters DM; MacRaild CA; Daniels R; Gosal WS; Thomson NH; Jones JA; Davis JJ; MacPhee CE; Dobson CM; Howlett GJ
    Biophys J; 2003 Dec; 85(6):3979-90. PubMed ID: 14645087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal behavior in the mesoscale properties of amyloid fibrils.
    Assenza S; Adamcik J; Mezzenga R; De Los Rios P
    Phys Rev Lett; 2014 Dec; 113(26):268103. PubMed ID: 25615390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse Correlation between Amyloid Stiffness and Size.
    Nassar R; Wong E; Gsponer J; Lamour G
    J Am Chem Soc; 2019 Jan; 141(1):58-61. PubMed ID: 30562031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation.
    Guo S; Akhremitchev BB
    Biomacromolecules; 2006 May; 7(5):1630-6. PubMed ID: 16677048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-persistence-length complex scaling behavior in lysozyme amyloid fibrils.
    Lara C; Usov I; Adamcik J; Mezzenga R
    Phys Rev Lett; 2011 Dec; 107(23):238101. PubMed ID: 22182128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical deformation mechanisms and properties of amyloid fibrils.
    Choi B; Yoon G; Lee SW; Eom K
    Phys Chem Chem Phys; 2015 Jan; 17(2):1379-89. PubMed ID: 25426573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile deformation and failure of amyloid and amyloid-like protein fibrils.
    Solar M; Buehler MJ
    Nanotechnology; 2014 Mar; 25(10):105703. PubMed ID: 24532127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of amyloid-like fibrils defined by secondary structures.
    Bortolini C; Jones NC; Hoffmann SV; Wang C; Besenbacher F; Dong M
    Nanoscale; 2015 May; 7(17):7745-52. PubMed ID: 25839069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomechanical properties of single amyloid fibrils.
    Sweers KK; Bennink ML; Subramaniam V
    J Phys Condens Matter; 2012 Jun; 24(24):243101. PubMed ID: 22585542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coexistence of ribbon and helical fibrils originating from hIAPP(20-29) revealed by quantitative nanomechanical atomic force microscopy.
    Zhang S; Andreasen M; Nielsen JT; Liu L; Nielsen EH; Song J; Ji G; Sun F; Skrydstrup T; Besenbacher F; Nielsen NC; Otzen DE; Dong M
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):2798-803. PubMed ID: 23388629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology and persistence length of amyloid fibrils are correlated to peptide molecular structure.
    vandenAkker CC; Engel MF; Velikov KP; Bonn M; Koenderink GH
    J Am Chem Soc; 2011 Nov; 133(45):18030-3. PubMed ID: 21999711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled amyloid fibrils with controllable conformational heterogeneity.
    Lee G; Lee W; Lee H; Lee CY; Eom K; Kwon T
    Sci Rep; 2015 Nov; 5():16220. PubMed ID: 26592772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of Conformation, Nanomechanics, and Infrared Nanospectroscopy of Single Amyloid Fibrils Converting into Microcrystals.
    Adamcik J; Ruggeri FS; Berryman JT; Zhang A; Knowles TPJ; Mezzenga R
    Adv Sci (Weinh); 2021 Jan; 8(2):2002182. PubMed ID: 33511004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy.
    Jansen R; Dzwolak W; Winter R
    Biophys J; 2005 Feb; 88(2):1344-53. PubMed ID: 15574704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous triangular structures of human islet amyloid polypeptide (amylin) with internal hydrophobic cavity and external wrapping morphology reveal the polymorphic nature of amyloid fibrils.
    Zhao J; Yu X; Liang G; Zheng J
    Biomacromolecules; 2011 May; 12(5):1781-94. PubMed ID: 21428404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.