These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25276849)

  • 1. Coordinated control of slip ratio for wheeled mobile robots climbing loose sloped terrain.
    Li Z; Wang Y
    ScientificWorldJournal; 2014; 2014():396382. PubMed ID: 25276849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Path-following control of wheeled planetary exploration robots moving on deformable rough terrain.
    Ding L; Gao HB; Deng ZQ; Li Z; Xia KR; Duan GR
    ScientificWorldJournal; 2014; 2014():793526. PubMed ID: 24790582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction.
    Li Z; Wang Y; Liu Z
    PLoS One; 2016; 11(7):e0158492. PubMed ID: 27467703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibration-Based Recognition of Wheel-Terrain Interaction for Terramechanics Model Selection and Terrain Parameter Identification for Lugged-Wheel Planetary Rovers.
    Lv F; Li N; Gao H; Ding L; Deng Z; Yu H; Liu Z
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive robust control with slipping parameters estimation based on intelligent learning for wheeled mobile robot.
    Korayem MH; Safarbali M; Lademakhi NY
    ISA Trans; 2024 Apr; 147():577-589. PubMed ID: 38395718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of slip rate-dependent traversability for path planning of wheeled mobile robot in sandy terrain.
    Sakayori G; Ishigami G
    Front Robot AI; 2024; 11():1320261. PubMed ID: 38332951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a special rigid wheel for traversing loose soil.
    Elsheikh MA
    Sci Rep; 2023 Jan; 13(1):171. PubMed ID: 36599910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model Predictive Control of a Novel Wheeled-Legged Planetary Rover for Trajectory Tracking.
    He J; Sun Y; Yang L; Gao F
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flocking of multiple mobile robots based on backstepping.
    Dong W
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):414-24. PubMed ID: 20709643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing and designing a leg shape to increase robustness of a running robot on rough terrain.
    Gaathon A; Degani A
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36270611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal Path-Following of Wheeled Mobile Robots: A Closed-Form Bounded Velocity Solution.
    Oftadeh R; Ghabcheloo R; Mattila J
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and Analysis of a Reconfigurable Rover for Improved Traversing over Soft Sloped Terrains.
    Lyu S; Zhang W; Yao C; Zhu Z; Jia Z
    Biomimetics (Basel); 2023 Mar; 8(1):. PubMed ID: 36975361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-coupled control for all-terrain rovers.
    Reina G
    Sensors (Basel); 2013 Jan; 13(1):785-800. PubMed ID: 23299625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical fixed-time trajectory tracking control of constrained wheeled mobile robots with kinematic disturbances.
    Lu Q; Chen J; Wang Q; Zhang D; Sun M; Su CY
    ISA Trans; 2022 Oct; 129(Pt A):273-286. PubMed ID: 35039151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual adaptive dynamic control of mobile robots using neural networks.
    Bugeja MK; Fabri SG; Camilleri L
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Path Planning for Wheeled Mobile Robot in Partially Known Uneven Terrain.
    Zhang B; Li G; Zheng Q; Bai X; Ding Y; Khan A
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical network interactions in distributed control of robots.
    Buscarino A; Fortuna L; Frasca M; Rizzo A
    Chaos; 2006 Mar; 16(1):015116. PubMed ID: 16599782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Obstacle Avoidance and Target Tracking of Multiple Wheeled Mobile Robots With Certified Safety.
    Li X; Xu Z; Li S; Su Z; Zhou X
    IEEE Trans Cybern; 2022 Nov; 52(11):11859-11873. PubMed ID: 33961580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized coordination of brakes and active steering for a 4WS passenger car.
    Tavasoli A; Naraghi M; Shakeri H
    ISA Trans; 2012 Sep; 51(5):573-83. PubMed ID: 22749293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards bio-inspired robots for underground and surface exploration in planetary environments: An overview and novel developments inspired in sand-swimmers.
    Lopez-Arreguin AJR; Montenegro S
    Heliyon; 2020 Jun; 6(6):e04148. PubMed ID: 32613101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.