These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 25277155)

  • 1. Tailoring viscoelastic response of carbon nanotubes cellular structure using electric field.
    Misra A; Kumar P
    Nanoscale; 2014 Nov; 6(22):13668-77. PubMed ID: 25277155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ transmission electron microscopy observations of individually selected freestanding carbon nanotubes during field emission.
    Kaiser M; Doytcheva M; Verheijen M; de Jonge N
    Ultramicroscopy; 2006; 106(10):902-8. PubMed ID: 16737778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailored viscoelasticity of a polymer cellular structure through nanoscale entanglement of carbon nanotubes.
    Ghosh R; Misra A
    Nanoscale Adv; 2020 Nov; 2(11):5375-5383. PubMed ID: 36132051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of photomechanical and electromechanical actuations in carbon nanotubes.
    Suri A; Misra A
    Nanotechnology; 2013 Mar; 24(10):105501. PubMed ID: 23416755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric field mediated separation of water-ethanol mixtures in carbon-nanotubes integrated in nanoporous graphene membranes.
    Borthakur MP; Bandyopadhyay D; Biswas G
    Faraday Discuss; 2018 Sep; 209(0):259-271. PubMed ID: 29972173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bulk piezoresistive characteristics of carbon nanotube composites for strain sensing of structures.
    Kang I; Joung KY; Choi GR; Schulz MJ; Choi YS; Hwang SH; Ko HS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3736-9. PubMed ID: 18047048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube wires and cables: near-term applications and future perspectives.
    Jarosz P; Schauerman C; Alvarenga J; Moses B; Mastrangelo T; Raffaelle R; Ridgley R; Landi B
    Nanoscale; 2011 Nov; 3(11):4542-53. PubMed ID: 21984338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotubes in neural interfacing applications.
    Voge CM; Stegemann JP
    J Neural Eng; 2011 Feb; 8(1):011001. PubMed ID: 21245526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic desalination using honeycomb carbon nanotubes (HC-CNTs): a conceptual study by molecular simulation.
    Chen Q; Kong X; Li J; Lu D; Liu Z
    Phys Chem Chem Phys; 2014 Sep; 16(35):18941-8. PubMed ID: 25092215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of cellular uptake and cytotoxicity of carbon nanotubes using flow cytometry.
    Al-Jamal KT; Kostarelos K
    Methods Mol Biol; 2010; 625():123-34. PubMed ID: 20422386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotating-Electric-Field-Induced Carbon-Nanotube-Based Nanomotor in Water: A Molecular Dynamics Study.
    Rahman MM; Chowdhury MM; Alam MK
    Small; 2017 May; 13(19):. PubMed ID: 28371324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.
    Su J; Guo H
    ACS Nano; 2011 Jan; 5(1):351-9. PubMed ID: 21162530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular self-assembly of biopolymers with carbon nanotubes for biomimetic and bio-inspired sensing and actuation.
    Lu L; Chen W
    Nanoscale; 2011 Jun; 3(6):2412-20. PubMed ID: 21523297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of density variation and non-covalent functionalization on the compressive behavior of carbon nanotube arrays.
    Misra A; Raney JR; Craig AE; Daraio C
    Nanotechnology; 2011 Oct; 22(42):425705. PubMed ID: 21937787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers.
    Lehmann W; Skupin H; Tolksdorf C; Gebhard E; Zentel R; Krüger P; Lösche M; Kremer F
    Nature; 2001 Mar; 410(6827):447-50. PubMed ID: 11260707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the unzipping of multiwalled carbon nanotubes.
    dos Santos RP; Perim E; Autreto PA; Brunetto G; Galvão DS
    Nanotechnology; 2012 Nov; 23(46):465702. PubMed ID: 23093108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective actuation of arrays of carbon nanotubes using magnetic resonance.
    Volodin A; Santini CA; De Gendt S; Vereecken PM; Van Haesendonck C
    ACS Nano; 2013 Jul; 7(7):5777-83. PubMed ID: 23742039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes: directions and perspectives in oral regenerative medicine.
    Martins-Júnior PA; Alcântara CE; Resende RR; Ferreira AJ
    J Dent Res; 2013 Jul; 92(7):575-83. PubMed ID: 23677650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research progress of neural tissue engineering based on electrically conductive carbon nanotube scaffold].
    Xiang N; Wang G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Nov; 25(11):1389-92. PubMed ID: 22229201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.