These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 25277293)

  • 1. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.
    Su F; Lv X; Miao M
    Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gamma-irradiated carbon nanotube yarn as substrate for high-performance fiber supercapacitors.
    Su F; Miao M; Niu H; Wei Z
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2553-60. PubMed ID: 24484219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles.
    Zhang D; Miao M; Niu H; Wei Z
    ACS Nano; 2014 May; 8(5):4571-9. PubMed ID: 24754666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics.
    Kou L; Huang T; Zheng B; Han Y; Zhao X; Gopalsamy K; Sun H; Gao C
    Nat Commun; 2014 May; 5():3754. PubMed ID: 24786366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high performance asymmetric supercapacitor based on in situ prepared CuCo
    Liang X; Wang Q; Ma Y; Zhang D
    Dalton Trans; 2018 Dec; 47(47):17146-17152. PubMed ID: 30467563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional and Washable Carbon Nanotube-Wrapped Textile Yarns for Wearable E-Textiles.
    Hossain MM; Lubna MM; Bradford PD
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3365-3376. PubMed ID: 36622361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Performance Carbon Nanotube Yarn Supercapacitors with a Surface-Oxidized Copper Current Collector.
    Zhang D; Wu Y; Li T; Huang Y; Zhang A; Miao M
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25835-42. PubMed ID: 26523943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors.
    Wang Z; Qin S; Seyedin S; Zhang J; Wang J; Levitt A; Li N; Haines C; Ovalle-Robles R; Lei W; Gogotsi Y; Baughman RH; Razal JM
    Small; 2018 Sep; 14(37):e1802225. PubMed ID: 30084530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices.
    Lee JA; Shin MK; Kim SH; Cho HU; Spinks GM; Wallace GG; Lima MD; Lepró X; Kozlov ME; Baughman RH; Kim SJ
    Nat Commun; 2013; 4():1970. PubMed ID: 23733169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance hybrid carbon nanotube fibers for wearable energy storage.
    Lu Z; Chao Y; Ge Y; Foroughi J; Zhao Y; Wang C; Long H; Wallace GG
    Nanoscale; 2017 Apr; 9(16):5063-5071. PubMed ID: 28265639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twist-Stabilized, Coiled Carbon Nanotube Yarns with Enhanced Capacitance.
    Son W; Chun S; Lee JM; Jeon G; Sim HJ; Kim HW; Cho SB; Lee D; Park J; Jeon J; Suh D; Choi C
    ACS Nano; 2022 Feb; 16(2):2661-2671. PubMed ID: 35072453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors.
    Choi C; Kim SH; Sim HJ; Lee JA; Choi AY; Kim YT; Lepró X; Spinks GM; Baughman RH; Kim SJ
    Sci Rep; 2015 Mar; 5():9387. PubMed ID: 25797351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays.
    Wang K; Meng Q; Zhang Y; Wei Z; Miao M
    Adv Mater; 2013 Mar; 25(10):1494-8. PubMed ID: 23300025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thread-like supercapacitors based on one-step spun nanocomposite yarns.
    Meng Q; Wang K; Guo W; Fang J; Wei Z; She X
    Small; 2014 Aug; 10(15):3187-93. PubMed ID: 24729355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical NiCo
    Wang YF; Wang HT; Yang SY; Yue Y; Bian SW
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30384-30390. PubMed ID: 31347825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible hybrid yarn-shaped supercapacitors based on porous nickel cobalt sulfide nanosheet array layers on gold metalized cotton yarns.
    Wang HT; Liu YN; Kang XH; Wang YF; Yang SY; Bian SW; Zhu Q
    J Colloid Interface Sci; 2018 Dec; 532():527-535. PubMed ID: 30103135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible supercapacitor made of carbon nanotube yarn with internal pores.
    Choi C; Lee JA; Choi AY; Kim YT; Lepró X; Lima MD; Baughman RH; Kim SJ
    Adv Mater; 2014 Apr; 26(13):2059-65. PubMed ID: 24353070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.