These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 25277402)
1. Fluorescent nanosensor for probing histone acetyltransferase activity based on acetylation protection and magnetic graphitic nanocapsules. Han Y; Li P; Xu Y; Li H; Song Z; Nie Z; Chen Z; Yao S Small; 2015 Feb; 11(7):877-85. PubMed ID: 25277402 [TBL] [Abstract][Full Text] [Related]
2. Time-resolved luminescence biosensor for continuous activity detection of protein acetylation-related enzymes based on DNA-sensitized terbium(III) probes. Han Y; Li H; Hu Y; Li P; Wang H; Nie Z; Yao S Anal Chem; 2015 Sep; 87(18):9179-85. PubMed ID: 26307596 [TBL] [Abstract][Full Text] [Related]
3. Efficient AuPd@GO-based electrochemical nanoprobe for sensitive detection of histone acetylase activity and its inhibitor. Liu Q; Yang L; She Y; Hu Y Anal Bioanal Chem; 2019 Nov; 411(27):7327-7336. PubMed ID: 31520170 [TBL] [Abstract][Full Text] [Related]
4. Graphene oxide-peptide nanocomplex as a versatile fluorescence probe of protein kinase activity based on phosphorylation protection against carboxypeptidase digestion. Zhou J; Xu X; Liu W; Liu X; Nie Z; Qing M; Nie L; Yao S Anal Chem; 2013 Jun; 85(12):5746-54. PubMed ID: 23734972 [TBL] [Abstract][Full Text] [Related]
5. Magnetic graphitic nanocapsules for programmed DNA fishing and detection. Song ZL; Zhao XH; Liu WN; Ding D; Bian X; Liang H; Zhang XB; Chen Z; Tan W Small; 2013 Mar; 9(6):951-7. PubMed ID: 23208981 [TBL] [Abstract][Full Text] [Related]
6. G-quadruplex-based fluorometric biosensor for label-free and homogenous detection of protein acetylation-related enzymes activities. Wang H; Li Y; Zhao K; Chen S; Wang Q; Lin B; Nie Z; Yao S Biosens Bioelectron; 2017 May; 91():400-407. PubMed ID: 28063389 [TBL] [Abstract][Full Text] [Related]
7. Ultrasensitive mushroom-like electrochemical immunosensor for probing the activity of histone acetyltransferase. Xu L; Zhang Q; Hu Y; Ma S; Hu D; Wang J; Rao J; Guo Z; Wang S; Wu D; Liu Q; Peng J Anal Chim Acta; 2019 Aug; 1066():28-35. PubMed ID: 31027532 [TBL] [Abstract][Full Text] [Related]
8. Cucurbit[8]uril-assisted peptide assembly for feasible electrochemical assay of histone acetyltransferase activity. Miao X; Wang Y; Gu Z; Mao D; Ning L; Cao Y Anal Bioanal Chem; 2019 Jan; 411(2):387-393. PubMed ID: 30382324 [TBL] [Abstract][Full Text] [Related]
9. A novel electrogenerated chemiluminescence biosensor for histone acetyltransferases activity analysis and inhibition based on mimetic superoxide dismutase of tannic acid assembled nanoprobes. Zou Y; Wang Z; Zhang H; Liu Y Biosens Bioelectron; 2018 Dec; 122():205-210. PubMed ID: 30265970 [TBL] [Abstract][Full Text] [Related]
11. Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells. Gong J; Zhu J; Goodman OB; Pestell RG; Schlegel PN; Nanus DM; Shen R Oncogene; 2006 Mar; 25(14):2011-21. PubMed ID: 16434977 [TBL] [Abstract][Full Text] [Related]
12. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Shi Y; Pan Y; Zhang H; Zhang Z; Li MJ; Yi C; Yang M Biosens Bioelectron; 2014 Jun; 56():39-45. PubMed ID: 24462829 [TBL] [Abstract][Full Text] [Related]
13. A mix-and-read fluorescence strategy for the switch-on probing of kinase activity based on an aptameric-peptide/graphene-oxide platform. Lei C; Xu X; Zhou J; Liu X; Nie Z; Qing M; Li P; Huang Y; Yao S Chem Asian J; 2014 Sep; 9(9):2560-7. PubMed ID: 25048161 [TBL] [Abstract][Full Text] [Related]
14. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Qian ZS; Shan XY; Chai LJ; Ma JJ; Chen JR; Feng H Biosens Bioelectron; 2014 Oct; 60():64-70. PubMed ID: 24768864 [TBL] [Abstract][Full Text] [Related]
15. A gold nanoparticles colorimetric assay for label-free detection of protein kinase activity based on phosphorylation protection against exopeptidase cleavage. Zhou J; Xu X; Liu X; Li H; Nie Z; Qing M; Huang Y; Yao S Biosens Bioelectron; 2014 Mar; 53():295-300. PubMed ID: 24157613 [TBL] [Abstract][Full Text] [Related]
16. Identification of lysine K18 acetylation on histone H3 peptide using gold nanoparticles' aggregation behaviour. Li N; Sutarlie L; Lew QJ; Chao SH; Su X Amino Acids; 2016 Apr; 48(4):1023-1031. PubMed ID: 26718709 [TBL] [Abstract][Full Text] [Related]
17. Recent advances in biosensor for histone acetyltransferase detection. Chen Y; Zhou Y; Yin H Biosens Bioelectron; 2021 Mar; 175():112880. PubMed ID: 33303321 [TBL] [Abstract][Full Text] [Related]
18. Structural analysis of a highly acetylated protein using a curved-field reflectron mass spectrometer. Wang D; Thompson P; Cole PA; Cotter RJ Proteomics; 2005 Jun; 5(9):2288-96. PubMed ID: 15887180 [TBL] [Abstract][Full Text] [Related]
19. Bio-inspired construction of a semi-artificial enzyme complex for detecting histone acetyltransferases activity. Cheng W; Ma J; Zhang Y; Xu C; Zhang Z; Hu L; Li J Analyst; 2020 Jan; 145(2):613-618. PubMed ID: 31782424 [TBL] [Abstract][Full Text] [Related]