These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 25277489)
1. The development and evaluation of a computerized diagnosis scheme for pneumoconiosis on digital chest radiographs. Zhu B; Luo W; Li B; Chen B; Yang Q; Xu Y; Wu X; Chen H; Zhang K Biomed Eng Online; 2014 Oct; 13():141. PubMed ID: 25277489 [TBL] [Abstract][Full Text] [Related]
2. Support vector machine model for diagnosing pneumoconiosis based on wavelet texture features of digital chest radiographs. Zhu B; Chen H; Chen B; Xu Y; Zhang K J Digit Imaging; 2014 Feb; 27(1):90-7. PubMed ID: 23836078 [TBL] [Abstract][Full Text] [Related]
3. An automatic computer-aided detection scheme for pneumoconiosis on digital chest radiographs. Yu P; Xu H; Zhu Y; Yang C; Sun X; Zhao J J Digit Imaging; 2011 Jun; 24(3):382-93. PubMed ID: 20174852 [TBL] [Abstract][Full Text] [Related]
4. Computerized analysis of pneumoconiosis in digital chest radiography: effect of artificial neural network trained with power spectra. Okumura E; Kawashita I; Ishida T J Digit Imaging; 2011 Dec; 24(6):1126-32. PubMed ID: 21153856 [TBL] [Abstract][Full Text] [Related]
5. Computerized Classification of Pneumoconiosis on Digital Chest Radiography Artificial Neural Network with Three Stages. Okumura E; Kawashita I; Ishida T J Digit Imaging; 2017 Aug; 30(4):413-426. PubMed ID: 28108817 [TBL] [Abstract][Full Text] [Related]
6. Intelligent Image Diagnosis of Pneumoconiosis Based on Wavelet Transform-Derived Texture Features. Wang Z; Hu M; Zeng M; Wang G Comput Math Methods Med; 2022; 2022():2037019. PubMed ID: 35341000 [TBL] [Abstract][Full Text] [Related]
7. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines. Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352 [TBL] [Abstract][Full Text] [Related]
8. Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification. Shiraishi J; Li Q; Suzuki K; Engelmann R; Doi K Med Phys; 2006 Jul; 33(7):2642-53. PubMed ID: 16898468 [TBL] [Abstract][Full Text] [Related]
9. Deep learning pneumoconiosis staging and diagnosis system based on multi-stage joint approach. Liu C; Fang Y; Xie Y; Zheng H; Li X; Wu D; Zhang T BMC Med Imaging; 2024 Jul; 24(1):165. PubMed ID: 38956579 [TBL] [Abstract][Full Text] [Related]
10. Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography. Wang X; Yu J; Zhu Q; Li S; Zhao Z; Yang B; Pu J Occup Environ Med; 2020 Sep; 77(9):597-602. PubMed ID: 32471837 [TBL] [Abstract][Full Text] [Related]
11. Automated detection of pneumoconiosis with multilevel deep features learned from chest X-Ray radiographs. Devnath L; Luo S; Summons P; Wang D Comput Biol Med; 2021 Feb; 129():104125. PubMed ID: 33310394 [TBL] [Abstract][Full Text] [Related]
12. [Computerized classification of pneumoconiosis radiographs based on grey level co-occurrence matrices]. Masumoto Y; Kawashita I; Okura Y; Nakajima M; Okumura E; Ishida T Nihon Hoshasen Gijutsu Gakkai Zasshi; 2011; 67(4):336-45. PubMed ID: 21532243 [TBL] [Abstract][Full Text] [Related]
13. [Quantitative analysis of pneumoconiosis in standard chest radiographs]. Sasaki Y; Katsuragawa S; Yanagisawa T Nihon Igaku Hoshasen Gakkai Zasshi; 1992 Oct; 52(10):1385-93. PubMed ID: 1448333 [TBL] [Abstract][Full Text] [Related]
14. Comparison of digital with film radiographs for the classification of pneumoconiotic pleural abnormalities. Larson TC; Holiday DB; Antao VC; Thomas J; Pinheiro G; Kapil V; Franzblau A Acad Radiol; 2012 Feb; 19(2):131-40. PubMed ID: 22098943 [TBL] [Abstract][Full Text] [Related]
15. Automatic detection and recognition of silicosis in chest radiograph. Zhu L; Zheng R; Jin H; Zhang Q; Zhang W Biomed Mater Eng; 2014; 24(6):3389-95. PubMed ID: 25227049 [TBL] [Abstract][Full Text] [Related]
16. [Study on evaluation method of circular small shadow profusion in chest CT reconstruction images of pneumoconiosis]. Liu C; Yang M; Wang Q; Bai J; Duan Z; Dong HT Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2024 May; 42(5):359-369. PubMed ID: 38802310 [No Abstract] [Full Text] [Related]
17. Computer-aided detection of pulmonary pathology in pediatric chest radiographs. Mouton A; Pitcher RD; Douglas TS Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):619-25. PubMed ID: 20879452 [TBL] [Abstract][Full Text] [Related]
18. Potential of digital chest radiography-based deep learning in screening and diagnosing pneumoconiosis: An observational study. Zhang Y; Zheng B; Zeng F; Cheng X; Wu T; Peng Y; Zhang Y; Xie Y; Yi W; Chen W; Wu J; Li L Medicine (Baltimore); 2024 Jun; 103(25):e38478. PubMed ID: 38905434 [TBL] [Abstract][Full Text] [Related]
19. Comparative evaluation of support vector machines for computer aided diagnosis of lung cancer in CT based on a multi-dimensional data set. Sun T; Wang J; Li X; Lv P; Liu F; Luo Y; Gao Q; Zhu H; Guo X Comput Methods Programs Biomed; 2013 Aug; 111(2):519-24. PubMed ID: 23727300 [TBL] [Abstract][Full Text] [Related]
20. Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. Way TW; Sahiner B; Chan HP; Hadjiiski L; Cascade PN; Chughtai A; Bogot N; Kazerooni E Med Phys; 2009 Jul; 36(7):3086-98. PubMed ID: 19673208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]