These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 25277489)
21. Development of CAD based on ANN analysis of power spectra for pneumoconiosis in chest radiographs: effect of three new enhancement methods. Okumura E; Kawashita I; Ishida T Radiol Phys Technol; 2014 Jul; 7(2):217-27. PubMed ID: 24414539 [TBL] [Abstract][Full Text] [Related]
23. Detection and Visualisation of Pneumoconiosis Using an Ensemble of Multi-Dimensional Deep Features Learned from Chest X-rays. Devnath L; Fan Z; Luo S; Summons P; Wang D Int J Environ Res Public Health; 2022 Sep; 19(18):. PubMed ID: 36141457 [TBL] [Abstract][Full Text] [Related]
24. Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model. Tan M; Pu J; Zheng B Int J Comput Assist Radiol Surg; 2014 Nov; 9(6):1005-20. PubMed ID: 24664267 [TBL] [Abstract][Full Text] [Related]
25. Effect of finite sample size on feature selection and classification: a simulation study. Way TW; Sahiner B; Hadjiiski LM; Chan HP Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900 [TBL] [Abstract][Full Text] [Related]
26. Computerized detection of pulmonary nodules in chest radiographs based on morphological features and wavelet snake model. Keserci B; Yoshida H Med Image Anal; 2002 Dec; 6(4):431-47. PubMed ID: 12494950 [TBL] [Abstract][Full Text] [Related]
27. Computerized analysis of abnormal asymmetry in digital chest radiographs: evaluation of potential utility. Armato SG; Giger ML; MacMahon H J Digit Imaging; 1999 Feb; 12(1):34-42. PubMed ID: 10036666 [TBL] [Abstract][Full Text] [Related]
29. Image feature analysis and computer-aided diagnosis in digital radiography: effect of digital parameters on the accuracy of computerized analysis of interstitial disease in digital chest radiographs. Katsuragawa S; Doi K; Nakamori N; MacMahon H Med Phys; 1990; 17(1):72-8. PubMed ID: 2407936 [TBL] [Abstract][Full Text] [Related]
30. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models. Lee WL; Chang K; Hsieh KS Med Biol Eng Comput; 2016 Sep; 54(9):1409-22. PubMed ID: 26530048 [TBL] [Abstract][Full Text] [Related]
31. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents. Wu JT; Wong KCL; Gur Y; Ansari N; Karargyris A; Sharma A; Morris M; Saboury B; Ahmad H; Boyko O; Syed A; Jadhav A; Wang H; Pillai A; Kashyap S; Moradi M; Syeda-Mahmood T JAMA Netw Open; 2020 Oct; 3(10):e2022779. PubMed ID: 33034642 [TBL] [Abstract][Full Text] [Related]
32. Optimal matrix size of chest radiographs for computer-aided detection on lung nodule or mass with deep learning. Kim YG; Lee SM; Lee KH; Jang R; Seo JB; Kim N Eur Radiol; 2020 Sep; 30(9):4943-4951. PubMed ID: 32350657 [TBL] [Abstract][Full Text] [Related]
33. Automated patient identity recognition by analysis of chest radiograph features. Kao EF; Lin WC; Jaw TS; Liu GC; Wu JS; Lee CN Acad Radiol; 2013 Aug; 20(8):1024-31. PubMed ID: 23830608 [TBL] [Abstract][Full Text] [Related]
34. [The analysis of consistency between digital radiography and high-kV chest radiographs in diagnosis pneumoconiosis]. Chen JQ; Jiang ZQ; Xiao Y; Zhao YW; Zhang X Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2012 Jan; 30(1):8-12. PubMed ID: 22730680 [TBL] [Abstract][Full Text] [Related]
35. Identification of high-risk population of pneumoconiosis using deep learning segmentation of lung 3D images and radiomics texture analysis. Liu Y; Wu J; Zhou J; Guo J; Liang C; Xing Y; Wang Z; Chen L; Ding Y; Ren D; Bai Y; Hu D Comput Methods Programs Biomed; 2024 Feb; 244():108006. PubMed ID: 38215580 [TBL] [Abstract][Full Text] [Related]
36. Improving performance of computer-aided detection scheme by combining results from two machine learning classifiers. Park SC; Pu J; Zheng B Acad Radiol; 2009 Mar; 16(3):266-74. PubMed ID: 19201355 [TBL] [Abstract][Full Text] [Related]
37. Fusion of quantitative imaging features and serum biomarkers to improve performance of computer-aided diagnosis scheme for lung cancer: A preliminary study. Gong J; Liu JY; Jiang YJ; Sun XW; Zheng B; Nie SD Med Phys; 2018 Dec; 45(12):5472-5481. PubMed ID: 30317652 [TBL] [Abstract][Full Text] [Related]
38. AMFP-net: Adaptive multi-scale feature pyramid network for diagnosis of pneumoconiosis from chest X-ray images. Alam MS; Wang D; Sowmya A Artif Intell Med; 2024 Aug; 154():102917. PubMed ID: 38917599 [TBL] [Abstract][Full Text] [Related]
39. Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs. Dunnmon JA; Yi D; Langlotz CP; Ré C; Rubin DL; Lungren MP Radiology; 2019 Feb; 290(2):537-544. PubMed ID: 30422093 [TBL] [Abstract][Full Text] [Related]
40. Reduction of false positives in computerized detection of lung nodules in chest radiographs using artificial neural networks, discriminant analysis, and a rule-based scheme. Wu YC; Doi K; Giger ML; Metz CE; Zhang W J Digit Imaging; 1994 Nov; 7(4):196-207. PubMed ID: 7858017 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]