BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25277721)

  • 1. Retrotransposon-based profiling of mammalian epigenomes: DNA methylation of IAP LTRs in embryonic stem, somatic and cancer cells.
    Bakshi A; Kim J
    Genomics; 2014 Dec; 104(6 Pt B):538-44. PubMed ID: 25277721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locus-specific DNA methylation analysis of retrotransposons in ES, somatic and cancer cells using High-Throughput Targeted Repeat Element Bisulfite Sequencing.
    Bakshi A; Ekram MB; Kim J
    Genom Data; 2015 Mar; 3():87-89. PubMed ID: 25554740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput targeted repeat element bisulfite sequencing (HT-TREBS): genome-wide DNA methylation analysis of IAP LTR retrotransposon.
    Ekram MB; Kim J
    PLoS One; 2014; 9(7):e101683. PubMed ID: 25003790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spontaneous genetically induced epiallele at a retrotransposon shapes host genome function.
    Bertozzi TM; Takahashi N; Hanin G; Kazachenka A; Ferguson-Smith AC
    Elife; 2021 Mar; 10():. PubMed ID: 33755012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locus-specific hypomethylation of the mouse IAP retrotransposon is associated with transcription factor-binding sites.
    Shimosuga KI; Fukuda K; Sasaki H; Ichiyanagi K
    Mob DNA; 2017; 8():20. PubMed ID: 29255492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Targeted Repeat Element Bisulfite Sequencing (HT-TREBS).
    Bakshi A; Ekram MB; Kim J
    Methods Mol Biol; 2019; 1908():219-228. PubMed ID: 30649731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lsh regulates LTR retrotransposon repression independently of Dnmt3b function.
    Dunican DS; Cruickshanks HA; Suzuki M; Semple CA; Davey T; Arceci RJ; Greally J; Adams IR; Meehan RR
    Genome Biol; 2013 Dec; 14(12):R146. PubMed ID: 24367978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retrotransposons as a major source of epigenetic variations in the mammalian genome.
    Ekram MB; Kang K; Kim H; Kim J
    Epigenetics; 2012 Apr; 7(4):370-82. PubMed ID: 22415164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Germ line-specific expression of intracisternal A-particle retrotransposons in transgenic mice.
    Dupressoir A; Heidmann T
    Mol Cell Biol; 1996 Aug; 16(8):4495-503. PubMed ID: 8754850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA methylation variation of human-specific Alu repeats.
    Bakshi A; Herke SW; Batzer MA; Kim J
    Epigenetics; 2016; 11(2):163-73. PubMed ID: 26890526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential epigenetic suppression of the autonomous MusD over the nonautonomous ETn mouse retrotransposons.
    Maksakova IA; Zhang Y; Mager DL
    Mol Cell Biol; 2009 May; 29(9):2456-68. PubMed ID: 19273603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence features of retrotransposons allow for epigenetic variability.
    Costello KR; Leung A; Trac C; Lee M; Basam M; Pospisilik JA; Schones DE
    Elife; 2021 Oct; 10():. PubMed ID: 34668484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repression of retrotransposal elements in mouse embryonic stem cells is primarily mediated by a DNA methylation-independent mechanism.
    Hutnick LK; Huang X; Loo TC; Ma Z; Fan G
    J Biol Chem; 2010 Jul; 285(27):21082-91. PubMed ID: 20404320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells.
    Reichmann J; Crichton JH; Madej MJ; Taggart M; Gautier P; Garcia-Perez JL; Meehan RR; Adams IR
    PLoS Comput Biol; 2012; 8(4):e1002486. PubMed ID: 22570599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes.
    Kashkush K; Khasdan V
    Genetics; 2007 Dec; 177(4):1975-85. PubMed ID: 18073417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retrotransposons influence the mouse transcriptome: implication for the divergence of genetic traits.
    Horie K; Saito ES; Keng VW; Ikeda R; Ishihara H; Takeda J
    Genetics; 2007 Jun; 176(2):815-27. PubMed ID: 17435252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic and DNA methylation analysis reveal novel regions of variable methylation in the mouse IAP class of transposons.
    Faulk C; Barks A; Dolinoy DC
    BMC Genomics; 2013 Jan; 14():48. PubMed ID: 23343009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons.
    Mourier T; Willerslev E
    BMC Genomics; 2010 Mar; 11():167. PubMed ID: 20226011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1.
    Leung D; Du T; Wagner U; Xie W; Lee AY; Goyal P; Li Y; Szulwach KE; Jin P; Lorincz MC; Ren B
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6690-5. PubMed ID: 24757056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative methylation of ERVWE1/syncytin-1 and other human endogenous retrovirus LTRs in placenta tissues.
    Gimenez J; Montgiraud C; Oriol G; Pichon JP; Ruel K; Tsatsaris V; Gerbaud P; Frendo JL; Evain-Brion D; Mallet F
    DNA Res; 2009 Aug; 16(4):195-211. PubMed ID: 19561344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.