These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 25277812)
1. Detection of Bacillus thuringiensis Cry1Ab protein based on surface plasmon resonance immunosensor. Ming H; Wang M; Yin H Anal Biochem; 2015 Jan; 468():59-65. PubMed ID: 25277812 [TBL] [Abstract][Full Text] [Related]
2. An ultrasensitive electrochemical immunosensor for Cry1Ab based on phage displayed peptides. Lu X; Jiang DJ; Yan JX; Ma ZE; Luo XE; Wei TL; Xu Y; He QH Talanta; 2018 Mar; 179():646-651. PubMed ID: 29310289 [TBL] [Abstract][Full Text] [Related]
3. An ultrasensitive label-free electrochemiluminescent immunosensor for measuring Cry1Ab level and genetically modified crops content. Gao H; Wen L; Wu Y; Fu Z; Wu G Biosens Bioelectron; 2017 Nov; 97():122-127. PubMed ID: 28582707 [TBL] [Abstract][Full Text] [Related]
4. Development of an immunochromatographic assay for the specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin. Dong S; Liu Y; Zhang X; Xu C; Liu X; Zhang C Anal Biochem; 2019 Feb; 567():1-7. PubMed ID: 30130490 [TBL] [Abstract][Full Text] [Related]
5. Laboratory and field validation of a Cry1Ab protein quantitation method for water. Strain KE; Whiting SA; Lydy MJ Talanta; 2014 Oct; 128():109-16. PubMed ID: 25059137 [TBL] [Abstract][Full Text] [Related]
6. The fate of fusion Cry1Ab/1Ac proteins from Bt-transgenic rice in soil and water. Liu Y; Li J; Luo Z; Wang H; Liu F Ecotoxicol Environ Saf; 2016 Feb; 124():455-459. PubMed ID: 26624932 [TBL] [Abstract][Full Text] [Related]
7. Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model. Dong S; Zhang X; Liu Y; Zhang C; Xie Y; Zhong J; Xu C; Liu X Anal Bioanal Chem; 2017 Mar; 409(8):1985-1994. PubMed ID: 28078413 [TBL] [Abstract][Full Text] [Related]
9. Quantification of Cry1Ab in genetically modified maize leaves by liquid chromatography multiple reaction monitoring tandem mass spectrometry using 18O stable isotope dilution. Zhang Y; Lai C; Su R; Zhang M; Xiong Y; Qing H; Deng Y Analyst; 2012 Jun; 137(11):2699-705. PubMed ID: 22543512 [TBL] [Abstract][Full Text] [Related]
10. Occurrence, leaching, and degradation of Cry1Ab protein from transgenic maize detritus in agricultural streams. Griffiths NA; Tank JL; Royer TV; Rosi EJ; Shogren AJ; Frauendorf TC; Whiles MR Sci Total Environ; 2017 Aug; 592():97-105. PubMed ID: 28314135 [TBL] [Abstract][Full Text] [Related]
11. Development of monoclonal antibody-based sensitive ELISA for the determination of Cry1Ie protein in transgenic plant. Zhang Y; Zhang W; Liu Y; Wang J; Wang G; Liu Y Anal Bioanal Chem; 2016 Nov; 408(28):8231-8239. PubMed ID: 27659816 [TBL] [Abstract][Full Text] [Related]
12. Development of dipsticks for simultaneous detection of vip3A and cry1Ab/cry1Ac transgenic proteins. Kumar R J AOAC Int; 2012; 95(4):1131-7. PubMed ID: 22970582 [TBL] [Abstract][Full Text] [Related]
13. Occurrence and persistence of Bacillus thuringiensis (Bt) and transgenic Bt corn cry1Ab gene from an aquatic environment. Douville M; Gagné F; Blaise C; André C Ecotoxicol Environ Saf; 2007 Feb; 66(2):195-203. PubMed ID: 16499967 [TBL] [Abstract][Full Text] [Related]
14. Development of a lateral flow test strip for simultaneous detection of BT-Cry1Ab, BT-Cry1Ac and CP4 EPSPS proteins in genetically modified crops. Zeng H; Wang J; Jia J; Wu G; Yang Q; Liu X; Tang X Food Chem; 2021 Jan; 335():127627. PubMed ID: 32738534 [TBL] [Abstract][Full Text] [Related]
15. Extended monitoring of resistance to Bacillus thuringiensis Cry1Ab maize in Diatraea saccharalis (Lepidoptera: Crambidae). Huang F; Ghimire MN; Leonard BR; Daves C; Levy R; Baldwin J GM Crops Food; 2012; 3(3):245-54. PubMed ID: 22688686 [TBL] [Abstract][Full Text] [Related]
16. Electrogenerated chemiluminescence immunosensor for Bacillus thuringiensis Cry1Ac based on Fe3O4@Au nanoparticles. Li J; Xu Q; Wei X; Hao Z J Agric Food Chem; 2013 Feb; 61(7):1435-40. PubMed ID: 23317307 [TBL] [Abstract][Full Text] [Related]
17. Is the Cry1Ab protein from Bacillus thuringiensis (Bt) taken up by plants from soils previously planted with Bt corn and by carrot from hydroponic culture? Icoz I; Andow D; Zwahlen C; Stotzky G Bull Environ Contam Toxicol; 2009 Jul; 83(1):48-58. PubMed ID: 19444360 [TBL] [Abstract][Full Text] [Related]
18. Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape. Tank JL; Rosi-Marshall EJ; Royer TV; Whiles MR; Griffiths NA; Frauendorf TC; Treering DJ Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17645-50. PubMed ID: 20876106 [TBL] [Abstract][Full Text] [Related]
19. High sensitive detection of Cry1Ab protein using a quantum dot-based fluorescence-linked immunosorbent assay. Zhu X; Chen L; Shen P; Jia J; Zhang D; Yang L J Agric Food Chem; 2011 Mar; 59(6):2184-9. PubMed ID: 21329353 [TBL] [Abstract][Full Text] [Related]
20. Real-time immuno-PCR: an approach for detection of trace amounts of transgenic proteins. Kumar R; Sinha RP J AOAC Int; 2014; 97(6):1634-7. PubMed ID: 25632439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]