BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25278046)

  • 1. Cyclic cryopreservation affects the nanoscale material properties of trabecular bone.
    Landauer AK; Mondal S; Yuya PA; Kuxhaus L
    J Biomech; 2014 Nov; 47(14):3584-9. PubMed ID: 25278046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromechanical properties of canine femoral articular cartilage following multiple freeze-thaw cycles.
    Peters AE; Comerford EJ; Macaulay S; Bates KT; Akhtar R
    J Mech Behav Biomed Mater; 2017 Jul; 71():114-121. PubMed ID: 28285060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of multiple freeze-thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft.
    Jung HJ; Vangipuram G; Fisher MB; Yang G; Hsu S; Bianchi J; Ronholdt C; Woo SL
    J Orthop Res; 2011 Aug; 29(8):1193-8. PubMed ID: 21374710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tendon biomechanical properties are altered by storage duration but not freeze-thaw temperatures or cycles.
    Blaker CL; Ashton DM; Hartnell N; Little CB; Clarke EC
    J Orthop Res; 2024 Jun; 42(6):1180-1189. PubMed ID: 38245841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated freeze-thaw cycles do not alter the biomechanical properties of fibular allograft bone.
    Shaw JM; Hunter SA; Gayton JC; Boivin GP; Prayson MJ
    Clin Orthop Relat Res; 2012 Mar; 470(3):937-43. PubMed ID: 21863392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cumulative multiple freeze-thaw cycles and testing does not affect subsequent within-day variation in intervertebral flexibility of human cadaveric lumbosacral spine.
    Tan JS; Uppuganti S
    Spine (Phila Pa 1976); 2012 Sep; 37(20):E1238-42. PubMed ID: 22660554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of gamma irradiation and repetitive freeze-thaw cycles on the biomechanical properties of human flexor digitorum superficialis tendons.
    Ren D; Sun K; Tian S; Yang X; Zhang C; Wang W; Huang H; Zhang J; Deng Y
    J Biomech; 2012 Jan; 45(2):252-6. PubMed ID: 22078178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage.
    Szarko M; Muldrew K; Bertram JE
    BMC Musculoskelet Disord; 2010 Oct; 11():231. PubMed ID: 20932309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of multiple freeze-thaw on biomechanical properties of human allograft tendons].
    Huang H; Shi X; Zhang X; Wang P; Tian S; Wang Q; Sun K
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Feb; 25(2):243-6. PubMed ID: 21427861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons.
    Suto K; Urabe K; Naruse K; Uchida K; Matsuura T; Mikuni-Takagaki Y; Suto M; Nemoto N; Kamiya K; Itoman M
    Cell Tissue Bank; 2012 Mar; 13(1):71-80. PubMed ID: 21116722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of repeated loading and freeze-thaw cycling on immature bovine thoracic motion segment stiffness.
    Sunni N; Askin GN; Labrom RD; Izatt MT; Pearcy MJ; Adam CJ
    Proc Inst Mech Eng H; 2014 Oct; 228(10):1100-7. PubMed ID: 25406230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artefacts in the mechanical characterization of porcine articular cartilage due to freezing.
    Willett TL; Whiteside R; Wild PM; Wyss UP; Anastassiades T
    Proc Inst Mech Eng H; 2005; 219(1):23-9. PubMed ID: 15777054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of freeze-thaw and micro-computed tomography irradiation on structure-property relations of porcine trabecular bone.
    Lee W; Jasiuk I
    J Biomech; 2014 Apr; 47(6):1495-8. PubMed ID: 24612985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of selected thermal variables on the mechanical properties of trabecular bone.
    Borchers RE; Gibson LJ; Burchardt H; Hayes WC
    Biomaterials; 1995 May; 16(7):545-51. PubMed ID: 7492719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeze-thaw durability of air-entrained concrete.
    Shang HS; Yi TH
    ScientificWorldJournal; 2013; 2013():650791. PubMed ID: 23576906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of freeze/thaw cycles on several biomarkers in urine from patients with kidney disease.
    Zhang Y; Luo Y; Lu H; Wang N; Shen Y; Chen R; Fang P; Yu H; Wang C; Jia W
    Biopreserv Biobank; 2015 Apr; 13(2):144-6. PubMed ID: 25880475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of live birth in frozen-thawed single blastocyst transfer cycles by pre-freeze and post-thaw morphology.
    Ahlström A; Westin C; Wikland M; Hardarson T
    Hum Reprod; 2013 May; 28(5):1199-209. PubMed ID: 23477908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Repeated Freeze-Thaw on Serum Biomarkers Associated with Eye Disease.
    Gao Y; Tang L; Tang B; Cao W; Sun X
    Med Sci Monit; 2018 Jun; 24():4481-4488. PubMed ID: 29958264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of trabecular bone storage method on its elastic properties.
    Mazurkiewicz A
    Acta Bioeng Biomech; 2018; 20(1):21-27. PubMed ID: 29658529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Rapid Freeze-Thaw Cycling on the Mechanical Properties of Sustainable Strain-Hardening Cement Composite (2SHCC).
    Jang SJ; Rokugo K; Park WS; Yun HD
    Materials (Basel); 2014 Feb; 7(2):1422-1440. PubMed ID: 28788522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.