These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 25278157)
1. Preparation of carbon microspheres decorated with silver nanoparticles and their ability to remove dyes from aqueous solution. Chen Q; Wu Q J Hazard Mater; 2015; 283():193-201. PubMed ID: 25278157 [TBL] [Abstract][Full Text] [Related]
2. Facile fabrication of functional chitosan microspheres and study on their effective cationic/anionic dyes removal from aqueous solution. Yu S; Cui J; Jiang H; Zhong C; Meng J Int J Biol Macromol; 2019 Aug; 134():830-837. PubMed ID: 31054309 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous removal of cationic methylene blue and anionic reactive red 198 dyes using magnetic activated carbon nanoparticles: equilibrium, and kinetics analysis. Abuzerr S; Darwish M; Mahvi AH Water Sci Technol; 2018 May; 2017(2):534-545. PubMed ID: 29851406 [TBL] [Abstract][Full Text] [Related]
4. Kinetics, isotherms, and mechanism of removing cationic and anionic dyes from aqueous solutions using chitosan/magnetite/silver nanoparticles. Abdelaziz MA; Owda ME; Abouzeid RE; Alaysuy O; Mohamed EI Int J Biol Macromol; 2023 Jan; 225():1462-1475. PubMed ID: 36435457 [TBL] [Abstract][Full Text] [Related]
5. Silver nanoparticle-decorated on tannic acid-modified magnetite nanoparticles (Fe Veisi H; Moradi SB; Saljooqi A; Safarimehr P Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():445-452. PubMed ID: 30948080 [TBL] [Abstract][Full Text] [Related]
6. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light. Sohrabnezhad Sh; Zanjanchi MA; Razavi M Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():129-35. PubMed ID: 24769384 [TBL] [Abstract][Full Text] [Related]
7. Preparation of poly(sodium 4-styrene sulfonate) grafted magnetic chitosan microspheres for adsorption of cationic dyes. Men J; Shi H; Dong C; Yang Y; Han Y; Wang R; Zhang Y; Zhao T; Li J Int J Biol Macromol; 2021 Jun; 181():810-823. PubMed ID: 33865891 [TBL] [Abstract][Full Text] [Related]
8. Adsorption of Methylene blue and Rhodamine B by using biochar derived from Pongamia glabra seed cover. Bordoloi N; Dey MD; Mukhopadhyay R; Kataki R Water Sci Technol; 2018 Feb; 77(3-4):638-646. PubMed ID: 29431708 [TBL] [Abstract][Full Text] [Related]
9. Chitosan cross-linked graphene oxide/lignosulfonate composite aerogel for enhanced adsorption of methylene blue in water. Yan M; Huang W; Li Z Int J Biol Macromol; 2019 Sep; 136():927-935. PubMed ID: 31233788 [TBL] [Abstract][Full Text] [Related]
10. Titania modified activated carbon prepared from sugarcane bagasse: adsorption and photocatalytic degradation of methylene blue under visible light irradiation. El-Salamony RA; Amdeha E; Ghoneim SA; Badawy NA; Salem KM; Al-Sabagh AM Environ Technol; 2017 Dec; 38(24):3122-3136. PubMed ID: 28278770 [TBL] [Abstract][Full Text] [Related]
11. Removal of dyes from aqueous solutions using activated carbon prepared from rice husk residue. Li Y; Zhang X; Yang R; Li G; Hu C Water Sci Technol; 2016; 73(5):1122-8. PubMed ID: 26942535 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of magnetic epichlorohydrin cross-linked carboxymethyl cellulose microspheres and their adsorption behavior for methylene blue. Lin Q; Chang J; Gao M; Ma H J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(2):106-116. PubMed ID: 27768520 [TBL] [Abstract][Full Text] [Related]
13. Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution. Pal U; Sandoval A; Madrid SIU; Corro G; Sharma V; Mohanty P Chemosphere; 2016 Nov; 163():142-152. PubMed ID: 27529381 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of ZnO-nanorod-based materials for antibacterial, antifungal activities, DNA cleavage and efficient ultrasound-assisted dyes adsorption. Bazrafshan AA; Ghaedi M; Hajati S; Naghiha R; Asfaram A Ecotoxicol Environ Saf; 2017 Aug; 142():330-337. PubMed ID: 28437724 [TBL] [Abstract][Full Text] [Related]
15. Oxidized alginate/gelatin decorated silver nanoparticles as new nanocomposite for dye adsorption. Abou-Zeid RE; Awwad NS; Nabil S; Salama A; Youssef MA Int J Biol Macromol; 2019 Dec; 141():1280-1286. PubMed ID: 31518618 [TBL] [Abstract][Full Text] [Related]
16. Photocatalytic degradation of methyl orange, methylene blue and rhodamine B with AgCl nanocatalyst synthesised from its bulk material in the ionic liquid [P Rodríguez-Cabo B; Rodríguez-Palmeiro I; Corchero R; Rodil R; Rodil E; Arce A; Soto A Water Sci Technol; 2017 Jan; 75(1-2):128-140. PubMed ID: 28067653 [TBL] [Abstract][Full Text] [Related]
17. Magnetic nanocellulose from olive industry solid waste for the effective removal of methylene blue from wastewater. Jodeh S; Hamed O; Melhem A; Salghi R; Jodeh D; Azzaoui K; Benmassaoud Y; Murtada K Environ Sci Pollut Res Int; 2018 Aug; 25(22):22060-22074. PubMed ID: 29802610 [TBL] [Abstract][Full Text] [Related]
18. A novel adsorbent of Na(2)Ta(2)O(6) porous microspheres with F(-) gradient concentration distribution: high cationic selectivity and well-regulated recycling. Liu X; Huang S; Su Y; Chai Z; Zhai H; Wang X J Hazard Mater; 2014 Jan; 265():226-32. PubMed ID: 24365873 [TBL] [Abstract][Full Text] [Related]
19. Sustainable remediation of dye-contaminated wastewater using novel cross-linked Hex-CCP-co-PPT microspheres. Mehmood S; Haq F; Kiran M; Shaaban IA; Assiri MA; Haroon M; Yasin M; Farid A; Nawaz A; Akbar MM; El-Bahy ZM Chemosphere; 2023 Oct; 339():139637. PubMed ID: 37499806 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of nickel sulfide nanoparticles loaded on activated carbon as a novel adsorbent for the competitive removal of Methylene blue and Safranin-O. Ghaedi M; Pakniat M; Mahmoudi Z; Hajati S; Sahraei R; Daneshfar A Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():402-9. PubMed ID: 24412794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]