These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2527849)

  • 1. Regulation of mitochondrial matrix pH and adenosine 5'-triphosphatase activity during ischemia in slow heart-rate hearts. Role of Pi/H+ symport.
    Rouslin W; Broge CW
    J Biol Chem; 1989 Sep; 264(26):15224-9. PubMed ID: 2527849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of ATP conservation during ischemia in slow and fast heart rate hearts.
    Rouslin W; Broge CW
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C209-16. PubMed ID: 8430769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the mitochondrial adenosine 5'-triphosphatase in situ during ischemia and in vitro in intact and sonicated mitochondria from slow and fast heart-rate hearts.
    Rouslin W; Broge CW
    Arch Biochem Biophys; 1990 Jul; 280(1):103-11. PubMed ID: 2141243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mitochondrial adenosine 5'-triphosphatase in slow and fast heart rate hearts.
    Rouslin W
    Am J Physiol; 1987 Mar; 252(3 Pt 2):H622-7. PubMed ID: 2950775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the loss of mitochondrial function during zero-flow ischemia (autolysis) in slow and fast heart-rate hearts.
    Rouslin W
    J Mol Cell Cardiol; 1988 Nov; 20(11):999-1007. PubMed ID: 2976846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP depletion and mitochondrial functional loss during ischemia in slow and fast heart-rate hearts.
    Rouslin W; Broge CW; Grupp IL
    Am J Physiol; 1990 Dec; 259(6 Pt 2):H1759-66. PubMed ID: 2148059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protonic inhibition of the mitochondrial adenosine 5'-triphosphatase in ischemic cardiac muscle. Reversible binding of the ATPase inhibitor protein to the mitochondrial ATPase during ischemia.
    Rouslin W; Pullman ME
    J Mol Cell Cardiol; 1987 Jul; 19(7):661-8. PubMed ID: 2960823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATPase activity, IF1 content, and proton conductivity of ESMP from control and ischemic slow and fast heart-rate hearts.
    Rouslin W; Broge CW; Guerrieri F; Capozza G
    J Bioenerg Biomembr; 1995 Aug; 27(4):459-66. PubMed ID: 8595981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting the reactivation of the mitochondrial adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during and following the reenergization of mitochondria from ischemic cardiac muscle.
    Rouslin W; Broge CW
    Arch Biochem Biophys; 1989 Dec; 275(2):385-94. PubMed ID: 2531991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting the reactivation of the oligomycin-sensitive adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during the re-energization of intact mitochondria from ischemic cardiac muscle.
    Rouslin W
    J Biol Chem; 1987 Mar; 262(8):3472-6. PubMed ID: 2950098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IF1 function in situ in uncoupler-challenged ischemic rabbit, rat, and pigeon hearts.
    Rouslin W; Broge CW
    J Biol Chem; 1996 Sep; 271(39):23638-41. PubMed ID: 8798581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the species-homologous and species-heterologous binding of mitochondrial ATPase inhibitor, IF1, to the mitochondrial ATPase of slow and fast heart-rate hearts.
    Rouslin W; Broge CW
    Arch Biochem Biophys; 1993 Jun; 303(2):443-50. PubMed ID: 8512326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of loss of adenine nucleotides from mitochondria during myocardial ischemia.
    Sandhu GS; Asimakis GK
    J Mol Cell Cardiol; 1991 Dec; 23(12):1423-35. PubMed ID: 1811058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase.
    Penefsky HS
    J Biol Chem; 1977 May; 252(9):2891-9. PubMed ID: 16006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preconditioning in rat hearts is independent of mitochondrial F1F0 ATPase inhibition.
    Green DW; Murray HN; Sleph PG; Wang FL; Baird AJ; Rogers WL; Grover GJ
    Am J Physiol; 1998 Jan; 274(1):H90-7. PubMed ID: 9458856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protonic inhibition of the mitochondrial oligomycin-sensitive adenosine 5'-triphosphatase in ischemic and autolyzing cardiac muscle. Possible mechanism for the mitigation of ATP hydrolysis under nonenergizing conditions.
    Rouslin W
    J Biol Chem; 1983 Aug; 258(16):9657-61. PubMed ID: 6224783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of inhibition of the mitochondrial ATPase on net myocardial ATP in total ischemia.
    Jennings RB; Reimer KA; Steenbergen C
    J Mol Cell Cardiol; 1991 Dec; 23(12):1383-95. PubMed ID: 1839801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle.
    Rouslin W; Erickson JL; Solaro RJ
    Am J Physiol; 1986 Mar; 250(3 Pt 2):H503-8. PubMed ID: 2937313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of reversible ischemia on the activity of the mitochondrial ATPase: relationship to ischemic preconditioning.
    Vander Heide RS; Hill ML; Reimer KA; Jennings RB
    J Mol Cell Cardiol; 1996 Jan; 28(1):103-12. PubMed ID: 8745218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.