BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 25278608)

  • 1. Biofuels. Altered sterol composition renders yeast thermotolerant.
    Caspeta L; Chen Y; Ghiaci P; Feizi A; Buskov S; Hallström BM; Petranovic D; Nielsen J
    Science; 2014 Oct; 346(6205):75-8. PubMed ID: 25278608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiology. How to survive being hot and inebriated.
    Cheng C; Kao KC
    Science; 2014 Oct; 346(6205):35-6. PubMed ID: 25278598
    [No Abstract]   [Full Text] [Related]  

  • 3. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses.
    Caspeta L; Nielsen J
    mBio; 2015 Jul; 6(4):e00431. PubMed ID: 26199325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A calcium-dependent ergosterol mutant of Saccharomyces cerevisiae.
    Crowley JH; Tove S; Parks LW
    Curr Genet; 1998 Aug; 34(2):93-9. PubMed ID: 9724410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae.
    He X; Guo X; Liu N; Zhang B
    Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol production at elevated temperatures using encapsulation of yeast.
    Ylitervo P; Franzén CJ; Taherzadeh MJ
    J Biotechnol; 2011 Oct; 156(1):22-9. PubMed ID: 21807041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, sequencing, and disruption of the gene encoding sterol C-14 reductase in Saccharomyces cerevisiae.
    Lorenz RT; Parks LW
    DNA Cell Biol; 1992 Nov; 11(9):685-92. PubMed ID: 1418625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
    Endo A; Nakamura T; Shima J
    FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The wide-ranging phenotypes of ergosterol biosynthesis mutants, and implications for microbial cell factories.
    Johnston EJ; Moses T; Rosser SJ
    Yeast; 2020 Jan; 37(1):27-44. PubMed ID: 31800968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and growth properties of a yeast strain defective in sterol 14-reductase.
    Marcireau C; Guyonnet D; Karst F
    Curr Genet; 1992 Oct; 22(4):267-72. PubMed ID: 1394506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production.
    Argueso JL; Carazzolle MF; Mieczkowski PA; Duarte FM; Netto OV; Missawa SK; Galzerani F; Costa GG; Vidal RO; Noronha MF; Dominska M; Andrietta MG; Andrietta SR; Cunha AF; Gomes LH; Tavares FC; Alcarde AR; Dietrich FS; McCusker JH; Petes TD; Pereira GA
    Genome Res; 2009 Dec; 19(12):2258-70. PubMed ID: 19812109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Regulation role of sterol C-24 methyltransferase and sterol C-8 isomerase in the ergosterol biosynthesis of Saccharomyces cerevisiae].
    Zhang Z; He X; Li W; Lu Y; Wang Z; Zhang B
    Wei Sheng Wu Xue Bao; 2009 Aug; 49(8):1063-8. PubMed ID: 19835168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Characteristics of the final stages of ergosterol biosynthesis in Saccharomyces cerevisiae yeasts].
    Zhakovskaia ZA; Mikhaĭlova NP; Kamilova TA; Ogorodnikova TE; V'iunov KA
    Izv Akad Nauk SSSR Biol; 1989; (1):95-101. PubMed ID: 2654239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of over-expression of sterol C-22 desaturase on ergosterol production in yeast strains].
    Cai PL; He XP; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2007 Apr; 47(2):274-9. PubMed ID: 17552234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic isolation of an ERG24 null mutant of Saccharomyces cerevisiae.
    Crowley JH; Smith SJ; Leak FW; Parks LW
    J Bacteriol; 1996 May; 178(10):2991-3. PubMed ID: 8631695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ERG3 gene in Saccharomyces cerevisiae is required for the utilization of respiratory substrates and in heme-deficient cells.
    Smith SJ; Parks LW
    Yeast; 1993 Nov; 9(11):1177-87. PubMed ID: 8109167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced production of bioethanol from waste of beer fermentation broth at high temperature through consecutive batch strategy by simultaneous saccharification and fermentation.
    Khattak WA; Khan T; Ha JH; Ul-Islam M; Kang MK; Park JK
    Enzyme Microb Technol; 2013 Oct; 53(5):322-30. PubMed ID: 24034431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic constitution of industrial yeast.
    Benítez T; Martínez P; Codón AC
    Microbiologia; 1996 Sep; 12(3):371-84. PubMed ID: 8897417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellodextrin transport in yeast for improved biofuel production.
    Galazka JM; Tian C; Beeson WT; Martinez B; Glass NL; Cate JH
    Science; 2010 Oct; 330(6000):84-6. PubMed ID: 20829451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae.
    Hou L
    Appl Biochem Biotechnol; 2010 Feb; 160(4):1084-93. PubMed ID: 19214789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.