BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25278832)

  • 1. Neuroanatomy and sex differences of the lordosis-inhibiting system in the lateral septum.
    Tsukahara S; Kanaya M; Yamanouchi K
    Front Neurosci; 2014; 8():299. PubMed ID: 25278832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neonatal estrogen decreases neural density of the septum-midbrain central gray connection underlying the lordosis-inhibiting system in female rats.
    Tsukahara S; Ezawa N; Yamanouchi K
    Neuroendocrinology; 2003 Oct; 78(4):226-33. PubMed ID: 14583655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurohistological and behavioral evidence for lordosis-inhibiting tract from lateral septum to periaqueductal gray in male rats.
    Tsukahara S; Yamanouchi K
    J Comp Neurol; 2001 Mar; 431(3):293-310. PubMed ID: 11170006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex difference in septal neurons projecting axons to midbrain central gray in rats: a combined double retrograde tracing and ER-immunohistochemical study.
    Tsukahara S; Yamanouchi K
    Endocrinology; 2002 Jan; 143(1):285-94. PubMed ID: 11751620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of protein kinase C in the hypothalamic ventromedial nucleus or the midbrain central gray facilitates lordosis.
    Kow LM; Brown HE; Pfaff DW
    Brain Res; 1994 Oct; 660(2):241-8. PubMed ID: 7820693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efferent and afferent connections of the ventromedial hypothalamic nucleus determined by neural tracer analysis: implications for lordosis regulation in female rats.
    Shimogawa Y; Sakuma Y; Yamanouchi K
    Neurosci Res; 2015 Feb; 91():19-33. PubMed ID: 25448544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of partial and complete masculinization on the sexual differentiation of nuclei that control lordotic behavior in the male rat.
    Segovia S; Garcia-Falgueras A; Perez-Laso C; Pinos H; Carrillo B; Collado P; Claro F; Guillamon A
    Behav Brain Res; 2009 Jan; 196(2):261-7. PubMed ID: 18929601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional relationships between mesencephalic central gray and septum in regulating lordosis in female rats: effect of dual lesions.
    Kondo Y; Koizumi T; Arai Y; Kakeyama M; Yamanouchi K
    Brain Res Bull; 1993; 32(6):635-8. PubMed ID: 8221162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postnatal development of septal projections to the midbrain central gray in female rats: tract-tracing analysis with DiI.
    Kouki T; Yamanouchi K
    Neurosci Lett; 2007 Jan; 411(1):37-41. PubMed ID: 17110037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of postnatal androgens in sexual differentiation of the lordosis-inhibiting effect of central injections of cholecystokinin.
    Ulibarri C; Popper P; Micevych PE
    J Neurobiol; 1990 Jul; 21(5):796-807. PubMed ID: 2394993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sexual dimorphism in the vomeronasal pathway and sex differences in reproductive behaviors.
    Segovia S; Guillamón A
    Brain Res Brain Res Rev; 1993; 18(1):51-74. PubMed ID: 8467350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noradrenergic innervation to the VMN or MPN is not necessary for lordosis.
    Davis BL; Manzanares J; Lookingland KJ; Moore KE; Clemens LG
    Pharmacol Biochem Behav; 1991 Jul; 39(3):737-42. PubMed ID: 1784602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A contributory role for midbrain progesterone in the facilitation of female sexual behavior in rats.
    Pleim ET; Baumann J; Barfield RJ
    Horm Behav; 1991 Mar; 25(1):19-28. PubMed ID: 2045089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 8-OH-DPAT in the midbrain central gray inhibits lordosis behavior.
    Uphouse L; Caldarola-Pastuszka M; Droge M
    Pharmacol Biochem Behav; 1992 Nov; 43(3):833-8. PubMed ID: 1448478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Midbrain central gray GABAA receptor activation enhances, and blockade reduces, sexual behavior in the female rat.
    McCarthy MM; Pfaff DW; Schwartz-Giblin S
    Exp Brain Res; 1991; 86(1):108-16. PubMed ID: 1661679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of orphanin FQ/nociceptin in the medial preoptic nucleus and ventromedial nucleus of the hypothalamus facilitates lordosis.
    Sinchak K; Dewing P; Cook M; Micevych P
    Horm Behav; 2007 Mar; 51(3):406-12. PubMed ID: 17274997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of unilateral frontolateral hypothalamic knife cuts and asymmetrical unilateral septal lesions on lordosis behavior of rats.
    King TR; Nance DM
    Physiol Behav; 1985 Dec; 35(6):955-9. PubMed ID: 4095188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of a neural mechanism for the expression of female sexual behaviors in the male rat brain.
    Yamanouchi K; Arai Y
    Neuroendocrinology; 1985 May; 40(5):393-7. PubMed ID: 4010887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific opioid receptor blockade allows prepubertal guinea pigs to display progesterone-facilitated lordosis.
    Olster DH
    Horm Behav; 1998 Apr; 33(2):115-24. PubMed ID: 9647937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orphanin FQ in the mediobasal hypothalamus facilitates sexual receptivity through the deactivation of medial preoptic nucleus mu-opioid receptors.
    Sanathara NM; Moraes J; Kanjiya S; Sinchak K
    Horm Behav; 2011 Nov; 60(5):540-8. PubMed ID: 21872598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.