These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 2527958)

  • 1. Aiming error under transformed spatial mappings suggests a structure for visual-motor maps.
    Cunningham HA
    J Exp Psychol Hum Percept Perform; 1989 Aug; 15(3):493-506. PubMed ID: 2527958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A vector-sum process produces curved aiming paths under rotated visual-motor mappings.
    Cunningham HA; Vardi I
    Biol Cybern; 1990; 64(2):117-28. PubMed ID: 2291900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural representations for multi-context visuomotor adaptation and the impact of common representation on multi-task performance: a multivariate decoding approach.
    Song Y; Shin W; Kim P; Jeong J
    Front Hum Neurosci; 2023; 17():1221944. PubMed ID: 37822708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameter value switching in discrete and continuous aiming movements.
    Sherwood DE
    Percept Mot Skills; 2010 Dec; 111(3):901-17. PubMed ID: 21319627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term adaptation to prism-induced inversion of the retinal images.
    Richter H; Magnusson S; Imamura K; Fredrikson M; Okura M; Watanabe Y; Långström B
    Exp Brain Res; 2002 Jun; 144(4):445-57. PubMed ID: 12037630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct coordinate systems for adaptations of movement direction and extent.
    Poh E; Carroll TJ; de Rugy A
    J Neurophysiol; 2017 Nov; 118(5):2670-2686. PubMed ID: 28835524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensorimotor adaptation to rotated visual input: different mechanisms for small versus large rotations.
    Abeele S; Bock O
    Exp Brain Res; 2001 Oct; 140(4):407-10. PubMed ID: 11685393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple representations and mechanisms for visuomotor adaptation in young children.
    Tahej PK; Ferrel-Chapus C; Olivier I; Ginhac D; Rolland JP
    Hum Mov Sci; 2012 Dec; 31(6):1425-35. PubMed ID: 22704964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between space and number representations during motor preparation in manual aiming.
    Ishihara M; Jacquin-Courtois S; Flory V; Salemme R; Imanaka K; Rossetti Y
    Neuropsychologia; 2006; 44(7):1009-16. PubMed ID: 16406028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple concurrent visual-motor mappings: implications for models of adaptation.
    Cunningham HA; Welch RB
    J Exp Psychol Hum Percept Perform; 1994 Oct; 20(5):987-99. PubMed ID: 7964533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropy of space-time outcome in a movement speed-accuracy task.
    Hsieh TY; Pacheco MM; Newell KM
    Hum Mov Sci; 2015 Dec; 44():201-10. PubMed ID: 26401614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The movement speed-accuracy relation in space-time.
    Hsieh TY; Liu YT; Mayer-Kress G; Newell KM
    Hum Mov Sci; 2013 Feb; 32(1):257-69. PubMed ID: 23465725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliance on visual attention during visuomotor adaptation: an SSVEP study.
    Reuter EM; Bednark J; Cunnington R
    Exp Brain Res; 2015 Jul; 233(7):2041-51. PubMed ID: 25893908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential transfer processes in incremental visuomotor adaptation.
    Seidler RD
    Motor Control; 2005 Jan; 9(1):40-58. PubMed ID: 15784949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial representations and multiple-visual-systems hypotheses: evidence from a developmental deficit in visual location and orientation processing.
    McCloskey M
    Cortex; 2004; 40(4-5):677-94. PubMed ID: 15505978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visuomotor processing as reflected in the directional discharge of premotor and primary motor cortex neurons.
    Johnson MT; Coltz JD; Hagen MC; Ebner TJ
    J Neurophysiol; 1999 Feb; 81(2):875-94. PubMed ID: 10036299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the use of different spatial reference frames for movement control.
    Bock O; Worringham C; Dawson S
    Motor Control; 2009 Jan; 13(1):43-53. PubMed ID: 19246777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalisation between opposing visuomotor rotations when each is associated with visual targets and movements of different amplitude.
    Woolley DG; Carson RG; Tresilian JR; Riek S
    Brain Res; 2008 Jul; 1219():46-58. PubMed ID: 18541224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viewer-centered frame of reference for pointing to memorized targets in three-dimensional space.
    McIntyre J; Stratta F; Lacquaniti F
    J Neurophysiol; 1997 Sep; 78(3):1601-18. PubMed ID: 9310446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye-Hand Coordination during Visuomotor Adaptation with Different Rotation Angles: Effects of Terminal Visual Feedback.
    Rand MK; Rentsch S
    PLoS One; 2016; 11(11):e0164602. PubMed ID: 27812093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.