BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 25279704)

  • 1. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles.
    Guo S; Zhang X; Zhu W; He K; Su D; Mendoza-Garcia A; Ho SF; Lu G; Sun S
    J Am Chem Soc; 2014 Oct; 136(42):15026-33. PubMed ID: 25279704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions.
    Sun X; Li D; Ding Y; Zhu W; Guo S; Wang ZL; Sun S
    J Am Chem Soc; 2014 Apr; 136(15):5745-9. PubMed ID: 24650288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction.
    Ye F; Liu H; Hu W; Zhong J; Chen Y; Cao H; Yang J
    Dalton Trans; 2012 Mar; 41(10):2898-903. PubMed ID: 22261896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira cross-coupling reactions.
    Diyarbakir S; Can H; Metin Ö
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3199-206. PubMed ID: 25594280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction.
    Guo S; Zhang S; Su D; Sun S
    J Am Chem Soc; 2013 Sep; 135(37):13879-84. PubMed ID: 23978233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness.
    Sun X; Li D; Guo S; Zhu W; Sun S
    Nanoscale; 2016 Feb; 8(5):2626-31. PubMed ID: 26676367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.
    Chen D; Li C; Liu H; Ye F; Yang J
    Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts.
    Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW
    Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction.
    Zhang S; Hao Y; Su D; Doan-Nguyen VV; Wu Y; Li J; Sun S; Murray CB
    J Am Chem Soc; 2014 Nov; 136(45):15921-4. PubMed ID: 25350678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction.
    Li X; Liu J; He W; Huang Q; Yang H
    J Colloid Interface Sci; 2010 Apr; 344(1):132-6. PubMed ID: 20060983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning nanoparticle catalysis for the oxygen reduction reaction.
    Guo S; Zhang S; Sun S
    Angew Chem Int Ed Engl; 2013 Aug; 52(33):8526-44. PubMed ID: 23775769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-supported Pt^Ag nanostructures as cathode catalysts for oxygen reduction reaction.
    Feng YY; Zhang GR; Ma JH; Liu G; Xu BQ
    Phys Chem Chem Phys; 2011 Mar; 13(9):3863-72. PubMed ID: 21210027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step sonochemical syntheses of Ni@Pt core-shell nanoparticles with controlled shape and shell thickness for fuel cell electrocatalyst.
    Lee E; Jang JH; Matin MA; Kwon YU
    Ultrason Sonochem; 2014 Jan; 21(1):317-23. PubMed ID: 23769750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of highly active and stable Au-PtCu core-shell nanoparticles for oxygen reduction reaction.
    Hsu C; Huang C; Hao Y; Liu F
    Phys Chem Chem Phys; 2012 Nov; 14(42):14696-701. PubMed ID: 23032948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.