These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25279711)

  • 1. Directed Evolution of a Panel of Orthogonal T7 RNA Polymerase Variants for in Vivo or in Vitro Synthetic Circuitry.
    Meyer AJ; Ellefson JW; Ellington AD
    ACS Synth Biol; 2015 Oct; 4(10):1070-6. PubMed ID: 25279711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building an Inducible T7 RNA Polymerase/T7 Promoter Circuit in Synechocystis sp. PCC6803.
    Jin H; Lindblad P; Bhaya D
    ACS Synth Biol; 2019 Apr; 8(4):655-660. PubMed ID: 30935196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of synthetic T7 RNA polymerase expression systems.
    Kar S; Ellington AD
    Methods; 2018 Jul; 143():110-120. PubMed ID: 29518499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The low processivity of T7 RNA polymerase over the initially transcribed sequence can limit productive initiation in vivo.
    Lopez PJ; Guillerez J; Sousa R; Dreyfus M
    J Mol Biol; 1997 May; 269(1):41-51. PubMed ID: 9192999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution of genetic parts and circuits by compartmentalized partnered replication.
    Ellefson JW; Meyer AJ; Hughes RA; Cannon JR; Brodbelt JS; Ellington AD
    Nat Biotechnol; 2014 Jan; 32(1):97-101. PubMed ID: 24185096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic map of T7 DNA: comparative analysis of functional and electrostatic properties of T7 RNA polymerase-specific promoters.
    Kamzolova SG; Beskaravainy PM; Osypov AA; Dzhelyadin TR; Temlyakova EA; Sorokin AA
    J Biomol Struct Dyn; 2014; 32(8):1184-92. PubMed ID: 23895582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Expression of target gene in eukaryotic cells driven by prokaryotic T7 promoter and its RNA polymerase].
    Yuan ZG; Zhang JP; Chu YW; Wang Y; Xu W; Xiong SD
    Sheng Wu Gong Cheng Xue Bao; 2005 Mar; 21(2):182-6. PubMed ID: 16013472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function in promoter escape by T7 RNA polymerase.
    Martin CT; Esposito EA; Theis K; Gong P
    Prog Nucleic Acid Res Mol Biol; 2005; 80():323-47. PubMed ID: 16164978
    [No Abstract]   [Full Text] [Related]  

  • 9. Modular control of multiple pathways using engineered orthogonal T7 polymerases.
    Temme K; Hill R; Segall-Shapiro TH; Moser F; Voigt CA
    Nucleic Acids Res; 2012 Sep; 40(17):8773-81. PubMed ID: 22743271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of small ligand-protein interactions by using T7 RNA polymerase with DNA-modified ligand.
    Mie M; Sugita R; Endoh T; Kobatake E
    Anal Biochem; 2010 Oct; 405(1):109-13. PubMed ID: 20553866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emulsion based selection of T7 promoters of varying activity.
    Davidson EA; VAN Blarcom T; Levy M; Ellington AD
    Pac Symp Biocomput; 2010; ():433-43. PubMed ID: 19908395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mutation in T7 RNA polymerase that facilitates promoter clearance.
    Guillerez J; Lopez PJ; Proux F; Launay H; Dreyfus M
    Proc Natl Acad Sci U S A; 2005 Apr; 102(17):5958-63. PubMed ID: 15831591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preventing T7 RNA polymerase read-through transcription-A synthetic termination signal capable of improving bioprocess stability.
    Mairhofer J; Wittwer A; Cserjan-Puschmann M; Striedner G
    ACS Synth Biol; 2015 Mar; 4(3):265-73. PubMed ID: 24847676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of genes 51, 27, 28 coding for proteins of the central part of bacteriophage T4 baseplate in the bacteriophage T7 promoter/RNA polymerase expression system.
    Nieradko J; Podgórska B
    Acta Biochim Pol; 1993; 40(2):273-8. PubMed ID: 8212966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Interaction of RNA polymerase of bacteriophage T7 with affinity modifier analogs of nucleoside triphosphates].
    Tunitskaia VL; Kochetkova SV; Godovikova TS; Kochetkov SN
    Mol Biol (Mosk); 2000; 34(1):60-6. PubMed ID: 10732341
    [No Abstract]   [Full Text] [Related]  

  • 16. Inhibition of T7 RNA polymerase: transcription initiation and transition from initiation to elongation are inhibited by T7 lysozyme via a ternary complex with RNA polymerase and promoter DNA.
    Kumar A; Patel SS
    Biochemistry; 1997 Nov; 36(45):13954-62. PubMed ID: 9374875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro autogene.
    Davidson EA; Meyer AJ; Ellefson JW; Levy M; Ellington AD
    ACS Synth Biol; 2012 May; 1(5):190-6. PubMed ID: 23651157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel expression system for Corynebacterium acetoacidophilum and Escherichia coli based on the T7 RNA polymerase-dependent promoter.
    Equbal MJ; Srivastava P; Agarwal GP; Deb JK
    Appl Microbiol Biotechnol; 2013 Sep; 97(17):7755-66. PubMed ID: 23624684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twisted or shifted? Fluorescence measurements of late intermediates in transcription initiation by T7 RNA polymerase.
    Turingan RS; Theis K; Martin CT
    Biochemistry; 2007 May; 46(21):6165-8. PubMed ID: 17472344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the mechanism of inhibition of phage T7 RNA polymerase by lac repressor.
    Lopez PJ; Guillerez J; Sousa R; Dreyfus M
    J Mol Biol; 1998 Mar; 276(5):861-75. PubMed ID: 9566192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.