These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25279757)

  • 41. Temperature impacts on anaerobic biotransformation of LNAPL and concurrent shifts in microbial community structure.
    Zeman NR; Irianni Renno M; Olson MR; Wilson LP; Sale TC; De Long SK
    Biodegradation; 2014 Jul; 25(4):569-85. PubMed ID: 24469406
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioremediation of crude oil-polluted soil--effect of poultry droppings and natural rubber processing sludge application on biodegradation of petroleum hydrocarbons.
    Okieimen CO; Okieimen FE
    Environ Sci; 2005; 12(1):1-8. PubMed ID: 15793556
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Laboratory and field verification of a method to estimate the extent of petroleum biodegradation in soil.
    Douglas GS; Hardenstine JH; Liu B; Uhler AD
    Environ Sci Technol; 2012 Aug; 46(15):8279-87. PubMed ID: 22694180
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electricity generation from food wastes and microbial community structure in microbial fuel cells.
    Jia J; Tang Y; Liu B; Wu D; Ren N; Xing D
    Bioresour Technol; 2013 Sep; 144():94-9. PubMed ID: 23859985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Decomposition of long-chain petroleum hydrocarbons by Fenton-like processes: Effects of ferrous iron source, salinity and temperature.
    Qin J; Lin C; Almebayedh H; Albader M
    Ecotoxicol Environ Saf; 2019 Mar; 169():764-769. PubMed ID: 30502527
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of operating temperature on performance of microbial fuel cell.
    Behera M; Murthy SS; Ghangrekar MM
    Water Sci Technol; 2011; 64(4):917-22. PubMed ID: 22097080
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effect of temperature on biodegradation of the petrochemicals in contaminated soil].
    Xu Z; Li G; Wei H
    Huan Jing Ke Xue; 2001 Jul; 22(4):108-10. PubMed ID: 11569099
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures.
    Abed RM; Al-Thukair A; de Beer D
    FEMS Microbiol Ecol; 2006 Aug; 57(2):290-301. PubMed ID: 16867146
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of temperature change on power generation of microbial fuel cell.
    Li LH; Sun YM; Yuan ZH; Kong XY; Li Y
    Environ Technol; 2013; 34(13-16):1929-34. PubMed ID: 24350446
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of integrated extremophilic (halo-alkalo-thermophilic) bacterial consortium in the degradation of petroleum hydrocarbons and treatment of petroleum refinery wastewater under extreme condition.
    Al-Mur BA; Pugazhendi A; Jamal MT
    J Hazard Mater; 2021 Jul; 413():125351. PubMed ID: 33930944
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effective ammonium removal by anaerobic oxidation in microbial fuel cells.
    Jadhav DA; Ghangrekar MM
    Environ Technol; 2015; 36(5-8):767-75. PubMed ID: 25182800
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biodegradation of oil spill by petroleum refineries using consortia of novel bacterial strains.
    Singh B; Bhattacharya A; Channashettar VA; Jeyaseelan CP; Gupta S; Sarma PM; Mandal AK; Lal B
    Bull Environ Contam Toxicol; 2012 Aug; 89(2):257-62. PubMed ID: 22669336
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced bioaugmentation of petroleum- and salt-contaminated soil using wheat straw.
    Zhang K; Hua XF; Han HL; Wang J; Miao CC; Xu YY; Huang ZD; Zhang H; Yang JM; Jin WB; Liu YM; Liu Z
    Chemosphere; 2008 Nov; 73(9):1387-92. PubMed ID: 18842285
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of petroleum hydrocarbons and sulfates from produced water using different bioelectrochemical reactor configurations.
    Mohanakrishna G; Al-Raoush RI; Abu-Reesh IM; Aljaml K
    Sci Total Environ; 2019 May; 665():820-827. PubMed ID: 30790754
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in bacterial communities from anaerobic digesters during petroleum hydrocarbon degradation.
    Scherr KE; Lundaa T; Klose V; Bochmann G; Loibner AP
    J Biotechnol; 2012 Feb; 157(4):564-72. PubMed ID: 21939698
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbial reverse electrodialysis cells for synergistically enhanced power production.
    Kim Y; Logan BE
    Environ Sci Technol; 2011 Jul; 45(13):5834-9. PubMed ID: 21644573
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation.
    Mohanakrishna G; Venkata Mohan S; Sarma PN
    J Hazard Mater; 2010 May; 177(1-3):487-94. PubMed ID: 20071076
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.
    Mnif S; Chamkha M; Sayadi S
    J Appl Microbiol; 2009 Sep; 107(3):785-94. PubMed ID: 19320948
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes.
    Bauer RD; Rolle M; Bauer S; Eberhardt C; Grathwohl P; Kolditz O; Meckenstock RU; Griebler C
    J Contam Hydrol; 2009 Feb; 105(1-2):56-68. PubMed ID: 19095328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancement of anaerobic degradation of petroleum hydrocarbons by electron intermediate: Performance and mechanism.
    Liu X; Li Z; Zhang C; Tan X; Yang X; Wan C; Lee DJ
    Bioresour Technol; 2020 Jan; 295():122305. PubMed ID: 31675520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.