These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25279757)

  • 61. Biodegradation of petroleum hydrocarbons in contaminated clayey soils from a sub-arctic site: the role of aggregate size and microstructure.
    Chang W; Akbari A; Snelgrove J; Frigon D; Ghoshal S
    Chemosphere; 2013 Jun; 91(11):1620-6. PubMed ID: 23453601
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Copper recovery combined with electricity production in a microbial fuel cell.
    Heijne AT; Liu F; Weijden Rv; Weijma J; Buisman CJ; Hamelers HV
    Environ Sci Technol; 2010 Jun; 44(11):4376-81. PubMed ID: 20462261
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Plant residues--a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil.
    Shahsavari E; Adetutu EM; Anderson PA; Ball AS
    Sci Total Environ; 2013 Jan; 443():766-74. PubMed ID: 23231887
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ex situ bioremediation of oil-contaminated soil.
    Lin TC; Pan PT; Cheng SS
    J Hazard Mater; 2010 Apr; 176(1-3):27-34. PubMed ID: 20053499
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hydrocarbon biodegradation in oxygen-limited sequential batch reactors by consortium from weathered, oil-contaminated soil.
    Medina-Moreno SA; Huerta-Ochoa S; Gutiérrez-Rojas M
    Can J Microbiol; 2005 Mar; 51(3):231-9. PubMed ID: 15920621
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bioremediation of oil-contaminated soil using Candida catenulata and food waste.
    Joo HS; Ndegwa PM; Shoda M; Phae CG
    Environ Pollut; 2008 Dec; 156(3):891-6. PubMed ID: 18620787
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus.
    Rengasamy K; Berchmans S
    Bioresour Technol; 2012 Jan; 104():388-93. PubMed ID: 22130075
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Biodegradability in soil of residual hydrocarbons in petroleum tank bottoms].
    Ferrari MD; Albornoz C; Neirotti E
    Rev Argent Microbiol; 1994; 26(4):157-70. PubMed ID: 7761600
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation.
    Srikanth S; Kumar M; Singh D; Singh MP; Das BP
    Bioresour Technol; 2016 Dec; 221():70-77. PubMed ID: 27639226
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Anoxic biodegradation of triclosan and the removal of its antimicrobial effect in microbial fuel cells.
    Wang L; Liu Y; Wang C; Zhao X; Mahadeva GD; Wu Y; Ma J; Zhao F
    J Hazard Mater; 2018 Feb; 344():669-678. PubMed ID: 29154092
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of various organic carbon sources on simultaneous V(V) reduction and bioelectricity generation in single chamber microbial fuel cells.
    Hao L; Zhang B; Cheng M; Feng C
    Bioresour Technol; 2016 Feb; 201():105-10. PubMed ID: 26642216
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum-contaminated site.
    Parisi VA; Brubaker GR; Zenker MJ; Prince RC; Gieg LM; Da Silva ML; Alvarez PJ; Suflita JM
    Microb Biotechnol; 2009 Mar; 2(2):202-12. PubMed ID: 21261914
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sorption of benzene and naphthalene on (semi)-arid coastal soil as a function of salinity and temperature.
    Ngueleu SK; Rezanezhad F; Al-Raoush RI; Van Cappellen P
    J Contam Hydrol; 2018 Dec; 219():61-71. PubMed ID: 30420178
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Major factors affecting in situ biodegradation rates of jet-fuel during large-scale biosparging project in sedimentary bedrock.
    Machackova J; Wittlingerova Z; Vlk K; Zima J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(8):1152-65. PubMed ID: 22506708
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Temperature-induced changes in the proteome of Pseudomonas aeruginosa during petroleum hydrocarbon degradation.
    Wang JD; Qu CT; Song SF
    Arch Microbiol; 2021 Jul; 203(5):2463-2473. PubMed ID: 33677632
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Insights into redox mediators-resource harvest/application with power production from waste activated sludge through freezing/thawing-assisted anaerobic acidogenesis coupling microbial fuel cells.
    Xin X; Pang H; She Y; Hong J
    Bioresour Technol; 2020 Sep; 311():123469. PubMed ID: 32408194
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bioelectrochemical removal of tetracycline from four typical soils in China: A performance assessment.
    Zhao X; Li X; Zhang X; Li Y; Weng L; Ren T; Li Y
    Bioelectrochemistry; 2019 Oct; 129():26-33. PubMed ID: 31100650
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An underappreciated DIET for anaerobic petroleum hydrocarbon-degrading microbial communities.
    Aulenta F; Tucci M; Cruz Viggi C; Dolfing J; Head IM; Rotaru AE
    Microb Biotechnol; 2021 Jan; 14(1):2-7. PubMed ID: 32864850
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sewage enhanced bioelectrochemical degradation of petroleum hydrocarbons in soil environment through bioelectro-stimulation.
    Mohanakrishna G; Al-Raoush RI; Abu-Reesh IM
    Biotechnol Rep (Amst); 2020 Sep; 27():e00478. PubMed ID: 32518761
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enhancing the performance of soil microbial fuel cells by using a bentonite-Fe and Fe
    Yu B; Li Y; Feng L
    J Hazard Mater; 2019 Sep; 377():70-77. PubMed ID: 31151042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.