These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25279853)

  • 1. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data.
    Wright AM; Hillis DM
    PLoS One; 2014; 9(10):e109210. PubMed ID: 25279853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data.
    O'Reilly JE; Puttick MN; Parry L; Tanner AR; Tarver JE; Fleming J; Pisani D; Donoghue PC
    Biol Lett; 2016 Apr; 12(4):. PubMed ID: 27095266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertain-tree: discriminating among competing approaches to the phylogenetic analysis of phenotype data.
    Puttick MN; O'Reilly JE; Tanner AR; Fleming JF; Clark J; Holloway L; Lozano-Fernandez J; Parry LA; Tarver JE; Pisani D; Donoghue PC
    Proc Biol Sci; 2017 Jan; 284(1846):. PubMed ID: 28077778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of tree-building methods using a morphological dataset and a well-supported Hexapoda phylogeny.
    Francisco Barbosa F; Mermudes JRM; Russo CAM
    PeerJ; 2024; 12():e16706. PubMed ID: 38213769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative evaluation of maximum parsimony and Bayesian phylogenetic reconstruction using empirical morphological data.
    Schrago CG; Aguiar BO; Mello B
    J Evol Biol; 2018 Oct; 31(10):1477-1484. PubMed ID: 29957887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Handling Logical Character Dependency in Phylogenetic Inference: Extensive Performance Testing of Assumptions and Solutions Using Simulated and Empirical Data.
    Simões TR; Vernygora OV; de Medeiros BAS; Wright AM
    Syst Biol; 2023 Jun; 72(3):662-680. PubMed ID: 36773019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A likelihood approach to estimating phylogeny from discrete morphological character data.
    Lewis PO
    Syst Biol; 2001; 50(6):913-25. PubMed ID: 12116640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees.
    Sansom RS; Choate PG; Keating JN; Randle E
    Biol Lett; 2018 Jun; 14(6):. PubMed ID: 29925561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Most Parsimonious Likelihood Exhibits Multiple Optima for Compatible Characters.
    Matsieva J; St John K
    Bull Math Biol; 2020 Jan; 82(1):10. PubMed ID: 31932987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Among-character rate variation distributions in phylogenetic analysis of discrete morphological characters.
    Harrison LB; Larsson HC
    Syst Biol; 2015 Mar; 64(2):307-24. PubMed ID: 25527198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous.
    Kolaczkowski B; Thornton JW
    Nature; 2004 Oct; 431(7011):980-4. PubMed ID: 15496922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian and likelihood phylogenetic reconstructions of morphological traits are not discordant when taking uncertainty into consideration: a comment on Puttick
    Brown JW; Parins-Fukuchi C; Stull GW; Vargas OM; Smith SA
    Proc Biol Sci; 2017 Oct; 284(1864):. PubMed ID: 29021179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stasis and convergence characterize morphological evolution in eupolypod II ferns.
    Sundue MA; Rothfels CJ
    Ann Bot; 2014 Jan; 113(1):35-54. PubMed ID: 24197753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An extended model for phylogenetic maximum likelihood based on discrete morphological characters.
    Spade DA
    Stat Appl Genet Mol Biol; 2020 Feb; 19(1):. PubMed ID: 32078576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation.
    Mar JC; Harlow TJ; Ragan MA
    BMC Evol Biol; 2005 Jan; 5():8. PubMed ID: 15676079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data.
    O'Reilly JE; Puttick MN; Pisani D; Donoghue PCJ
    Palaeontology; 2018 Jan; 61(1):105-118. PubMed ID: 29398726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic analysis using parsimony and likelihood methods.
    Yang Z
    J Mol Evol; 1996 Feb; 42(2):294-307. PubMed ID: 8919881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species trees from consensus single nucleotide polymorphism (SNP) data: Testing phylogenetic approaches with simulated and empirical data.
    Schmidt-Lebuhn AN; Aitken NC; Chuah A
    Mol Phylogenet Evol; 2017 Nov; 116():192-201. PubMed ID: 28743644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the Performance of Probabilistic Algorithms for Phylogenetic Analysis of Big Morphological Datasets: A Simulation Study.
    Vernygora OV; Simões TR; Campbell EO
    Syst Biol; 2020 Nov; 69(6):1088-1105. PubMed ID: 32191335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating trees from filtered data: identifiability of models for morphological phylogenetics.
    Allman ES; Holder MT; Rhodes JA
    J Theor Biol; 2010 Mar; 263(1):108-19. PubMed ID: 20004210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.