These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 25279943)
1. Biohybrid polymer-antimicrobial peptide medium against Enterococcus faecalis. Eckhard LH; Sol A; Abtew E; Shai Y; Domb AJ; Bachrach G; Beyth N PLoS One; 2014; 9(10):e109413. PubMed ID: 25279943 [TBL] [Abstract][Full Text] [Related]
2. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens. Eckhard LH; Houri-Haddad Y; Sol A; Zeharia R; Shai Y; Beyth S; Domb AJ; Bachrach G; Beyth N PLoS One; 2016; 11(9):e0162537. PubMed ID: 27606830 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the use of d-enantiomeric and l-enantiomeric antimicrobial peptides incorporated in a calcium-chelating irrigant against Enterococcus faecalis root canal wall biofilms. Ye WH; Yeghiasarian L; Cutler CW; Bergeron BE; Sidow S; Xu HHK; Niu LN; Ma JZ; Tay FR J Dent; 2019 Dec; 91():103231. PubMed ID: 31712128 [TBL] [Abstract][Full Text] [Related]
4. Antibacterial activity of ultrashort cationic lipo-beta-peptides. Serrano GN; Zhanel GG; Schweizer F Antimicrob Agents Chemother; 2009 May; 53(5):2215-7. PubMed ID: 19237652 [TBL] [Abstract][Full Text] [Related]
5. A D-enantiomer of the antimicrobial peptide GL13K evades antimicrobial resistance in the Gram positive bacteria Enterococcus faecalis and Streptococcus gordonii. Hirt H; Hall JW; Larson E; Gorr SU PLoS One; 2018; 13(3):e0194900. PubMed ID: 29566082 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the antibacterial effect of tea tree oil on Enterococcus faecalis and biofilm in vitro. Qi J; Gong M; Zhang R; Song Y; Liu Q; Zhou H; Wang J; Mei Y J Ethnopharmacol; 2021 Dec; 281():114566. PubMed ID: 34450163 [TBL] [Abstract][Full Text] [Related]
7. How proteases from Enterococcus faecalis contribute to its resistance to short α-helical antimicrobial peptides. Nešuta O; Budešínský M; Hadravová R; Monincová L; Humpolicková J; Cerovský V Pathog Dis; 2017 Sep; 75(7):. PubMed ID: 28830077 [TBL] [Abstract][Full Text] [Related]
8. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
9. The Mechanism of Action of Ginkgolic Acid (15:1) against Gram-Positive Bacteria Involves Cross Talk with Iron Homeostasis. Wen Z; Zhao Y; Gong Z; Tang Y; Xiong Y; Chen J; Chen C; Zhang Y; Liu S; Zheng J; Li D; Deng Q; Yu Z Microbiol Spectr; 2022 Feb; 10(1):e0099121. PubMed ID: 35019708 [TBL] [Abstract][Full Text] [Related]
10. Antimicrobial activity of root canal irrigants associated with cetrimide against biofilm and planktonic Enterococcus faecalis. Nascimento CA; Tanomaru-Filho M; Faria-Junior NB; Faria G; Guerreiro-Tanomaru JM J Contemp Dent Pract; 2014 Sep; 15(5):603-7. PubMed ID: 25707833 [TBL] [Abstract][Full Text] [Related]
12. In vitro antibacterial activity of the peptide PsVP-10 against antimicrobial-resistant Enterococcus faecalis isolated from clinical samples. Padilla C; Lobos O; Brevis P; Abaca P; Hubert E J Antimicrob Chemother; 2004 Feb; 53(2):390-2. PubMed ID: 14729763 [TBL] [Abstract][Full Text] [Related]
13. Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm. Jung S; Park OJ; Kim AR; Ahn KB; Lee D; Kum KY; Yun CH; Han SH J Microbiol; 2019 Apr; 57(4):310-315. PubMed ID: 30671742 [TBL] [Abstract][Full Text] [Related]
14. Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules. Rodrigues CT; de Andrade FB; de Vasconcelos LRSM; Midena RZ; Pereira TC; Kuga MC; Duarte MAH; Bernardineli N Int Endod J; 2018 Aug; 51(8):901-911. PubMed ID: 29397005 [TBL] [Abstract][Full Text] [Related]
15. Triton X-100 counteracts antibiotic resistance of Enterococcus faecalis: An in vitro study. He X; Xv S; Liu R; Duan M; Fan W; Fan B J Dent; 2024 Jul; 146():105046. PubMed ID: 38729285 [TBL] [Abstract][Full Text] [Related]
16. The effect of MTADN on 10 Enterococcus faecalis isolates and biofilm: an in vitro study. Tong Z; Ling J; Lin Z; Li X; Mu Y J Endod; 2013 May; 39(5):674-8. PubMed ID: 23611389 [TBL] [Abstract][Full Text] [Related]
17. Drug repurposing: Antimicrobial and antibiofilm effects of penfluridol against Enterococcus faecalis. Zeng X; She P; Zhou L; Li S; Hussain Z; Chen L; Wu Y Microbiologyopen; 2021 Jan; 10(1):e1148. PubMed ID: 33345466 [TBL] [Abstract][Full Text] [Related]
18. Poly(Lysine)-Derived Carbon Quantum Dots Conquer Xu Y; Hao Y; Arif M; Xing X; Deng X; Wang D; Meng Y; Wang S; Hasanin MS; Wang W; Zhou Q Int J Nanomedicine; 2024; 19():5879-5893. PubMed ID: 38895145 [TBL] [Abstract][Full Text] [Related]
19. In vitro activities of daptomycin combined with fosfomycin or rifampin on planktonic and adherent linezolid-resistant isolates of Enterococcus faecalis. Zheng JX; Sun X; Lin ZW; Qi GB; Tu HP; Wu Y; Jiang SB; Chen Z; Deng QW; Qu D; Yu ZJ J Med Microbiol; 2019 Mar; 68(3):493-502. PubMed ID: 30882300 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomics Analysis Reveals Putative Genes Involved in Biofilm Formation and Biofilm-associated Drug Resistance of Enterococcus faecalis. Seneviratne CJ; Suriyanarayanan T; Swarup S; Chia KHB; Nagarajan N; Zhang C J Endod; 2017 Jun; 43(6):949-955. PubMed ID: 28457636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]