BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 25279983)

  • 21. Surprising fitness consequences of GC-biased gene conversion. II. Heterosis.
    Glémin S
    Genetics; 2011 Jan; 187(1):217-27. PubMed ID: 20956611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determinants of the Efficacy of Natural Selection on Coding and Noncoding Variability in Two Passerine Species.
    Corcoran P; Gossmann TI; Barton HJ; ; Slate J; Zeng K
    Genome Biol Evol; 2017 Nov; 9(11):2987-3007. PubMed ID: 29045655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it.
    Lachance J; Tishkoff SA
    Bioessays; 2013 Sep; 35(9):780-6. PubMed ID: 23836388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 1000 human genomes carry widespread signatures of GC biased gene conversion.
    Dutta R; Saha-Mandal A; Cheng X; Qiu S; Serpen J; Fedorova L; Fedorov A
    BMC Genomics; 2018 Apr; 19(1):256. PubMed ID: 29661137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biased Inference of Selection Due to GC-Biased Gene Conversion and the Rate of Protein Evolution in Flycatchers When Accounting for It.
    Bolívar P; Mugal CF; Rossi M; Nater A; Wang M; Dutoit L; Ellegren H
    Mol Biol Evol; 2018 Oct; 35(10):2475-2486. PubMed ID: 30085180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction between selection and biased gene conversion in mammalian protein-coding sequence evolution revealed by a phylogenetic covariance analysis.
    Lartillot N
    Mol Biol Evol; 2013 Feb; 30(2):356-68. PubMed ID: 23024185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ascertaining regions affected by GC-biased gene conversion through weak-to-strong mutational hotspots.
    Gotea V; Elnitski L
    Genomics; 2014; 103(5-6):349-56. PubMed ID: 24727706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations.
    Paudel R; Fedorova L; Fedorov A
    PLoS One; 2020; 15(4):e0232167. PubMed ID: 32353016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of Recombination on the Base Composition of Bacteria and Archaea.
    Bobay LM; Ochman H
    Mol Biol Evol; 2017 Oct; 34(10):2627-2636. PubMed ID: 28957503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for widespread GC-biased gene conversion in eukaryotes.
    Pessia E; Popa A; Mousset S; Rezvoy C; Duret L; Marais GA
    Genome Biol Evol; 2012; 4(7):675-82. PubMed ID: 22628461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ancestral alleles in the human genome based on population sequencing data.
    Park L
    PLoS One; 2015; 10(5):e0128186. PubMed ID: 26020928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Runaway GC Evolution in Gerbil Genomes.
    Pracana R; Hargreaves AD; Mulley JF; Holland PWH
    Mol Biol Evol; 2020 Aug; 37(8):2197-2210. PubMed ID: 32170949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution.
    Birdsell JA
    Mol Biol Evol; 2002 Jul; 19(7):1181-97. PubMed ID: 12082137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GC-biased gene conversion impacts ribosomal DNA evolution in vertebrates, angiosperms, and other eukaryotes.
    Escobar JS; Glémin S; Galtier N
    Mol Biol Evol; 2011 Sep; 28(9):2561-75. PubMed ID: 21444650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary forces affecting synonymous variations in plant genomes.
    Clément Y; Sarah G; Holtz Y; Homa F; Pointet S; Contreras S; Nabholz B; Sabot F; Sauné L; Ardisson M; Bacilieri R; Besnard G; Berger A; Cardi C; De Bellis F; Fouet O; Jourda C; Khadari B; Lanaud C; Leroy T; Pot D; Sauvage C; Scarcelli N; Tregear J; Vigouroux Y; Yahiaoui N; Ruiz M; Santoni S; Labouisse JP; Pham JL; David J; Glémin S
    PLoS Genet; 2017 May; 13(5):e1006799. PubMed ID: 28531201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates.
    Figuet E; Ballenghien M; Romiguier J; Galtier N
    Genome Biol Evol; 2014 Dec; 7(1):240-50. PubMed ID: 25527834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GC-biased gene conversion links the recombination landscape and demography to genomic base composition: GC-biased gene conversion drives genomic base composition across a wide range of species.
    Mugal CF; Weber CC; Ellegren H
    Bioessays; 2015 Dec; 37(12):1317-26. PubMed ID: 26445215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Meiotic recombination favors the spreading of deleterious mutations in human populations.
    Necşulea A; Popa A; Cooper DN; Stenson PD; Mouchiroud D; Gautier C; Duret L
    Hum Mutat; 2011 Feb; 32(2):198-206. PubMed ID: 21120948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Population size influences the type of nucleotide variations in humans.
    Subramanian S
    BMC Genet; 2019 Dec; 20(1):93. PubMed ID: 31805852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biased gene conversion and the evolution of mammalian genomic landscapes.
    Duret L; Galtier N
    Annu Rev Genomics Hum Genet; 2009; 10():285-311. PubMed ID: 19630562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.