These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
52 related articles for article (PubMed ID: 25280666)
21. Inference of active transcriptional networks by integration of gene expression kinetics modeling and multisource data. Vu TT; Vohradsky J Genomics; 2009 May; 93(5):426-33. PubMed ID: 19442636 [TBL] [Abstract][Full Text] [Related]
22. Two-dimensional statistical recoupling for the identification of perturbed metabolic networks from NMR spectroscopy. Blaise BJ; Navratil V; Domange C; Shintu L; Dumas ME; Elena-Herrmann B; Emsley L; Toulhoat P J Proteome Res; 2010 Sep; 9(9):4513-20. PubMed ID: 20590164 [TBL] [Abstract][Full Text] [Related]
23. Prediction of pairwise gene interaction using threshold logic. Gowda T; Vrudhula S; Kim S Ann N Y Acad Sci; 2009 Mar; 1158():276-86. PubMed ID: 19348649 [TBL] [Abstract][Full Text] [Related]
24. Gene network analysis: from heart development to cardiac therapy. Ferrazzi F; Bellazzi R; Engel FB Thromb Haemost; 2015 Mar; 113(3):522-31. PubMed ID: 25231088 [TBL] [Abstract][Full Text] [Related]
25. Genetic network analyzer: a tool for the qualitative modeling and simulation of bacterial regulatory networks. Batt G; Besson B; Ciron PE; de Jong H; Dumas E; Geiselmann J; Monte R; Monteiro PT; Page M; Rechenmann F; Ropers D Methods Mol Biol; 2012; 804():439-62. PubMed ID: 22144166 [TBL] [Abstract][Full Text] [Related]
26. Computational modeling of Caenorhabditis elegans vulval induction. Sun X; Hong P Bioinformatics; 2007 Jul; 23(13):i499-507. PubMed ID: 17646336 [TBL] [Abstract][Full Text] [Related]
27. Gene Ontology analysis in multiple gene clusters under multiple hypothesis testing framework. Zhong S; Xie D Artif Intell Med; 2007 Oct; 41(2):105-15. PubMed ID: 17913480 [TBL] [Abstract][Full Text] [Related]
28. Generating probabilistic Boolean networks from a prescribed transition probability matrix. Ching WK; Chen X; Tsing NK IET Syst Biol; 2009 Nov; 3(6):453-64. PubMed ID: 19947771 [TBL] [Abstract][Full Text] [Related]
29. A Geometric Method for Model Reduction of Biochemical Networks with Polynomial Rate Functions. Samal SS; Grigoriev D; Fröhlich H; Weber A; Radulescu O Bull Math Biol; 2015 Dec; 77(12):2180-211. PubMed ID: 26597097 [TBL] [Abstract][Full Text] [Related]
30. The Case for Algebraic Biology: from Research to Education. Macauley M; Youngs N Bull Math Biol; 2020 Aug; 82(9):115. PubMed ID: 32816124 [TBL] [Abstract][Full Text] [Related]
31. Algebraic expressions of conditional expectations in gene regulatory networks. Sunkara V J Math Biol; 2019 Oct; 79(5):1779-1829. PubMed ID: 31377871 [TBL] [Abstract][Full Text] [Related]
32. Scale invariance analysis for genetic networks applying homogeneity. Bernuau E; Efimov D; Perruquetti W J Math Biol; 2016 May; 72(6):1607-32. PubMed ID: 26304616 [TBL] [Abstract][Full Text] [Related]
33. WORKSHOP ON TOPOLOGY AND ABSTRACT ALGEBRA FOR BIOMEDICINE. Neumann EK; Lockwood S; Krishnamoorthy B; Spivak D Pac Symp Biocomput; 2016; 21():576-80. PubMed ID: 26776220 [No Abstract] [Full Text] [Related]
34. Democratizing systems immunology with modular transcriptional repertoire analyses. Chaussabel D; Baldwin N Nat Rev Immunol; 2014 Apr; 14(4):271-80. PubMed ID: 24662387 [TBL] [Abstract][Full Text] [Related]
35. Untangling statistical and biological models to understand network inference: the need for a genomics network ontology. Emmert-Streib F; Dehmer M; Haibe-Kains B Front Genet; 2014; 5():299. PubMed ID: 25221572 [TBL] [Abstract][Full Text] [Related]
36. Data identification for improving gene network inference using computational algebra. Dimitrova E; Stigler B Bull Math Biol; 2014 Nov; 76(11):2923-40. PubMed ID: 25280666 [TBL] [Abstract][Full Text] [Related]
37. Gene expression complex networks: synthesis, identification, and analysis. Lopes FM; Cesar RM; Costa Lda F J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810 [TBL] [Abstract][Full Text] [Related]
38. A regulatory network modeled from wild-type gene expression data guides functional predictions in Caenorhabditis elegans development. Stigler B; Chamberlin HM BMC Syst Biol; 2012 Jun; 6():77. PubMed ID: 22734688 [TBL] [Abstract][Full Text] [Related]
39. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Lee I; Lehner B; Crombie C; Wong W; Fraser AG; Marcotte EM Nat Genet; 2008 Feb; 40(2):181-8. PubMed ID: 18223650 [TBL] [Abstract][Full Text] [Related]