BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

822 related articles for article (PubMed ID: 25280707)

  • 21. Relationship Between Structure And Antimicrobial Activity Of Zinc Oxide Nanoparticles: An Overview.
    Lallo da Silva B; Abuçafy MP; Berbel Manaia E; Oshiro Junior JA; Chiari-Andréo BG; Pietro RCR; Chiavacci LA
    Int J Nanomedicine; 2019; 14():9395-9410. PubMed ID: 31819439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of nanosized gold particle addition to supported metal oxide catalyst in methanol oxidation.
    Kim KJ; You YJ; Chung MC; Kang CS; Chung KH; Jeong WJ; Jeong SW; Ahn HG
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3589-93. PubMed ID: 17252817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis.
    Singh S; Vidyarthi AS; Nigam VK; Dev A
    Artif Cells Nanomed Biotechnol; 2014 Feb; 42(1):6-12. PubMed ID: 23438180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review.
    Shi LE; Li ZH; Zheng W; Zhao YF; Jin YF; Tang ZX
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(2):173-86. PubMed ID: 24219062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metallic-based micro and nanostructures with antimicrobial activity.
    Pop CS; Hussien MD; Popa M; Mares A; Grumezescu AM; Grigore R; Lazar V; Chifiriuc MC; Sakizlian M; Bezirtzoglou E; Bertesteanu S
    Curr Top Med Chem; 2015; 15(16):1577-82. PubMed ID: 25877091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antimicrobial activity of metal oxide microspheres: an innovative process for homogeneous incorporation into materials.
    Feuillolay C; Haddioui L; Verelst M; Furiga A; Marchin L; Roques C
    J Appl Microbiol; 2018 Jul; 125(1):45-55. PubMed ID: 29502354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold.
    Hernández-Sierra JF; Ruiz F; Pena DC; Martínez-Gutiérrez F; Martínez AE; Guillén Ade J; Tapia-Pérez H; Castañón GM
    Nanomedicine; 2008 Sep; 4(3):237-40. PubMed ID: 18565800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanotechnology as a therapeutic tool to combat microbial resistance.
    Pelgrift RY; Friedman AJ
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.
    Allahverdiyev AM; Kon KV; Abamor ES; Bagirova M; Rafailovich M
    Expert Rev Anti Infect Ther; 2011 Nov; 9(11):1035-52. PubMed ID: 22029522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Review on Antimicrobial Properties of Metal Nanoparticles.
    Gharpure S; Akash A; Ankamwar B
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3303-3339. PubMed ID: 31748024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antimicrobial Activity of Biogenic Metal Oxide Nanoparticles and Their Synergistic Effect on Clinical Pathogens.
    Francis DV; Jayakumar MN; Ahmad H; Gokhale T
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Size-dependent antimicrobial response of zinc oxide nanoparticles.
    Palanikumar L; Ramasamy SN; Balachandran C
    IET Nanobiotechnol; 2014 Jun; 8(2):111-7. PubMed ID: 25014082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of antibacterial activity and toxic metal removal of chemically synthesized magnetic iron oxide titanium coated nanoparticles and application in bacterial treatment.
    Abdulhady YAM; El-Shazly MM; El-Kased RF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Feb; 53(3):205-212. PubMed ID: 29148917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Review on Nano-Antimicrobials: Metal Nanoparticles, Methods and Mechanisms.
    Hoseinzadeh E; Makhdoumi P; Taha P; Hossini H; Stelling J; Kamal MA; Ashraf GM
    Curr Drug Metab; 2017; 18(2):120-128. PubMed ID: 27908256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide interactions with metal and oxide surfaces.
    Vallee A; Humblot V; Pradier CM
    Acc Chem Res; 2010 Oct; 43(10):1297-306. PubMed ID: 20672797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles.
    Li Y; Zhang W; Niu J; Chen Y
    ACS Nano; 2012 Jun; 6(6):5164-73. PubMed ID: 22587225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections: A review.
    Kumar MS; Das AP
    Adv Colloid Interface Sci; 2017 Nov; 249():53-65. PubMed ID: 28668171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review.
    Agarwal H; Nakara A; Shanmugam VK
    Biomed Pharmacother; 2019 Jan; 109():2561-2572. PubMed ID: 30551516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium oxide supported gold nanoparticles as catalysts for the selective epoxidation of styrene by t-butyl hydroperoxide.
    Dumbre DK; Choudhary VR; Patil NS; Uphade BS; Bhargava SK
    J Colloid Interface Sci; 2014 Feb; 415():111-6. PubMed ID: 24267337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance.
    Shaikh S; Nazam N; Rizvi SMD; Ahmad K; Baig MH; Lee EJ; Choi I
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31109079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.