BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 25280745)

  • 1. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae.
    Brat D; Boles E
    FEMS Yeast Res; 2013 Mar; 13(2):241-4. PubMed ID: 23279585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis.
    Hammer SK; Avalos JL
    Metab Eng; 2017 Nov; 44():302-312. PubMed ID: 29037781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving isobutanol production with the yeast
    Wess J; Brinek M; Boles E
    Biotechnol Biofuels; 2019; 12():173. PubMed ID: 31303893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae.
    Lee KM; Kim SK; Lee YG; Park KH; Seo JH
    Bioresour Technol; 2018 Nov; 268():271-277. PubMed ID: 30081287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism.
    Chen X; Nielsen KF; Borodina I; Kielland-Brandt MC; Karhumaa K
    Biotechnol Biofuels; 2011 Jul; 4():21. PubMed ID: 21798060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha.
    Lu J; Brigham CJ; Gai CS; Sinskey AJ
    Appl Microbiol Biotechnol; 2012 Oct; 96(1):283-97. PubMed ID: 22864971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.
    Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production.
    Yuan J; Chen X; Mishra P; Ching CB
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):465-474. PubMed ID: 27847988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.
    Kuroda K; Ueda M
    FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae.
    Su Y; Shao W; Zhang A; Zhang W
    FEMS Yeast Res; 2021 Mar; 21(2):. PubMed ID: 33620449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae.
    Shi S; Si T; Liu Z; Zhang H; Ang EL; Zhao H
    Sci Rep; 2016 May; 6():25675. PubMed ID: 27161023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secretion of 2,3-dihydroxyisovalerate as a limiting factor for isobutanol production in Saccharomyces cerevisiae.
    Generoso WC; Brinek M; Dietz H; Oreb M; Boles E
    FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28505306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers.
    Generoso WC; Schadeweg V; Oreb M; Boles E
    Curr Opin Biotechnol; 2015 Jun; 33():1-7. PubMed ID: 25286420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae.
    Yuan J; Mishra P; Ching CB
    J Ind Microbiol Biotechnol; 2017 Jan; 44(1):107-117. PubMed ID: 27826727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7591-8. PubMed ID: 27225475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae.
    Brat D; Weber C; Lorenzen W; Bode HB; Boles E
    Biotechnol Biofuels; 2012 Sep; 5(1):65. PubMed ID: 22954227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the valine biosynthetic pathway to convert glucose into isobutanol.
    Savrasova EA; Kivero AD; Shakulov RS; Stoynova NV
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1287-94. PubMed ID: 21161324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae.
    Ida K; Ishii J; Matsuda F; Kondo T; Kondo A
    Microb Cell Fact; 2015 Apr; 14():62. PubMed ID: 25925006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.