These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25280873)

  • 41. Micro-differential scanning calorimeter for liquid biological samples.
    Wang S; Yu S; Siedler MS; Ihnat PM; Filoti DI; Lu M; Zuo L
    Rev Sci Instrum; 2016 Oct; 87(10):105005. PubMed ID: 27802741
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Leveraging liquid dielectrophoresis for microfluidic applications.
    Chugh D; Kaler KV
    Biomed Mater; 2008 Sep; 3(3):034009. PubMed ID: 18708707
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aqueous Two-Phase Systems at Large Scale: Challenges and Opportunities.
    Torres-Acosta MA; Mayolo-Deloisa K; González-Valdez J; Rito-Palomares M
    Biotechnol J; 2019 Jan; 14(1):e1800117. PubMed ID: 29878648
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recovery of biotechnological products using aqueous two phase systems.
    Phong WN; Show PL; Chow YH; Ling TC
    J Biosci Bioeng; 2018 Sep; 126(3):273-281. PubMed ID: 29673987
    [TBL] [Abstract][Full Text] [Related]  

  • 45. System establishment of ATPS for one-step purification of glutamate decarboxylase from E. coli after cell disruption.
    Yao W; Wu X; Zhu J; Sun B; Miller C
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1339-49. PubMed ID: 21484275
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Purification of plasmid DNA vectors by aqueous two-phase extraction and hydrophobic interaction chromatography.
    Trindade IP; Diogo MM; Prazeres DM; Marcos JC
    J Chromatogr A; 2005 Aug; 1082(2):176-84. PubMed ID: 16035359
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Minimizing the Influence of Fluorescent Tags on IgG Partition in PEG-Salt Aqueous Two-Phase Systems for Rapid Screening Applications.
    São Pedro MN; Azevedo AM; Aires-Barros MR; Soares RRG
    Biotechnol J; 2019 Aug; 14(8):e1800640. PubMed ID: 30957974
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shrinking, growing, and bursting: microfluidic equilibrium control of water-in-water droplets.
    Moon BU; Hwang DK; Tsai SS
    Lab Chip; 2016 Jul; 16(14):2601-8. PubMed ID: 27314278
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purification of β-mannanase derived from Bacillus subtilis ATCC 11774 using ionic liquid as adjuvant in aqueous two-phase system.
    Aziz NFHA; Abbasiliasi S; Ng HS; Phapugrangkul P; Bakar MHA; Tam YJ; Tan JS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jun; 1055-1056():104-112. PubMed ID: 28458127
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent advances in lab-on-a-chip for biosensing applications.
    Lafleur JP; Jönsson A; Senkbeil S; Kutter JP
    Biosens Bioelectron; 2016 Feb; 76():213-33. PubMed ID: 26318580
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultralow interfacial tensions of aqueous two-phase systems measured using drop shape.
    Atefi E; Mann JA; Tavana H
    Langmuir; 2014 Aug; 30(32):9691-9. PubMed ID: 25068649
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol).
    Zhao Z; Li Q; Ji X; Dimova R; Lipowsky R; Liu Y
    J Chromatogr A; 2016 Jun; 1452():107-15. PubMed ID: 27155914
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of Patterned Microbial Growth Dynamics in Aqueous Two-Phase Polymer Scaffolds.
    Huang AJ; Clarke AN; Jafari N; Leung BM
    ACS Biomater Sci Eng; 2021 Dec; 7(12):5506-5514. PubMed ID: 34757724
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidic-integrated DNA nanobiosensors.
    Ansari MIH; Hassan S; Qurashi A; Khanday FA
    Biosens Bioelectron; 2016 Nov; 85():247-260. PubMed ID: 27179566
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell-laden microgel prepared using a biocompatible aqueous two-phase strategy.
    Liu Y; Nambu NO; Taya M
    Biomed Microdevices; 2017 Sep; 19(3):55. PubMed ID: 28612283
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-throughput downstream process development for cell-based products using aqueous two-phase systems.
    Zimmermann S; Gretzinger S; Schwab ML; Scheeder C; Zimmermann PK; Oelmeier SA; Gottwald E; Bogsnes A; Hansson M; Staby A; Hubbuch J
    J Chromatogr A; 2016 Sep; 1464():1-11. PubMed ID: 27567679
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Partitioning studies of α-lactalbumin in environmental friendly poly (ethylene glycol)--citrate salt aqueous two phase systems.
    Kalaivani S; Regupathi I
    Bioprocess Biosyst Eng; 2013 Oct; 36(10):1475-83. PubMed ID: 23397449
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Separation of hybridoma cells from their IgG product using aqueous two-phase systems.
    Zijlstra GM; Michielsen MJ; de Gooijer CD; van der Pol LA; Tramper J
    Bioseparation; 1996; 6(4):201-10. PubMed ID: 9032983
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fully integrated microfluidic separations systems for biochemical analysis.
    Roman GT; Kennedy RT
    J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.