These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 25280984)

  • 21. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.
    Gardner B; Grüning A
    PLoS One; 2016; 11(8):e0161335. PubMed ID: 27532262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of Long Term Plasticity on Information Transmission Over Neuronal Networks.
    Khan T; Ramezani H; Abbasi NA; Akan OB
    IEEE Trans Nanobioscience; 2020 Jan; 19(1):25-34. PubMed ID: 31603791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A network of spiking neurons that can represent interval timing: mean field analysis.
    Gavornik JP; Shouval HZ
    J Comput Neurosci; 2011 Apr; 30(2):501-13. PubMed ID: 20830512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of Spike-Timing-Dependent Plasticity in Spiking Neural Systems with Noise.
    Nobukawa S; Nishimura H
    Int J Neural Syst; 2016 Aug; 26(5):1550040. PubMed ID: 26678248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using the virtual brain to reveal the role of oscillations and plasticity in shaping brain's dynamical landscape.
    Roy D; Sigala R; Breakspear M; McIntosh AR; Jirsa VK; Deco G; Ritter P
    Brain Connect; 2014 Dec; 4(10):791-811. PubMed ID: 25131838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuron as a reward-modulated combinatorial switch and a model of learning behavior.
    Rvachev MM
    Neural Netw; 2013 Oct; 46():62-74. PubMed ID: 23708671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectral analysis of input spike trains by spike-timing-dependent plasticity.
    Gilson M; Fukai T; Burkitt AN
    PLoS Comput Biol; 2012; 8(7):e1002584. PubMed ID: 22792056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learning in neural networks by reinforcement of irregular spiking.
    Xie X; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041909. PubMed ID: 15169045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning by the dendritic prediction of somatic spiking.
    Urbanczik R; Senn W
    Neuron; 2014 Feb; 81(3):521-8. PubMed ID: 24507189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Learning cross-modal spatial transformations through spike timing-dependent plasticity.
    Davison AP; Frégnac Y
    J Neurosci; 2006 May; 26(21):5604-15. PubMed ID: 16723517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
    Graupner M; Wallisch P; Ostojic S
    J Neurosci; 2016 Nov; 36(44):11238-11258. PubMed ID: 27807166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.
    Naudé J; Cessac B; Berry H; Delord B
    J Neurosci; 2013 Sep; 33(38):15032-43. PubMed ID: 24048833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.
    Liu H; Song Y; Xue F; Li X
    Chaos; 2015 Nov; 25(11):113108. PubMed ID: 26627568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
    Burbank KS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatiotemporal learning in analog neural networks using spike-timing-dependent synaptic plasticity.
    Yoshioka M; Scarpetta S; Marinaro M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051917. PubMed ID: 17677108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning the structure of correlated synaptic subgroups using stable and competitive spike-timing-dependent plasticity.
    Meffin H; Besson J; Burkitt AN; Grayden DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041911. PubMed ID: 16711840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A biophysical model of synaptic plasticity and metaplasticity can account for the dynamics of the backward shift of hippocampal place fields.
    Yu X; Shouval HZ; Knierim JJ
    J Neurophysiol; 2008 Aug; 100(2):983-92. PubMed ID: 18509078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.
    Ocker GK; Litwin-Kumar A; Doiron B
    PLoS Comput Biol; 2015 Aug; 11(8):e1004458. PubMed ID: 26291697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.